Approximately, 55% of the energy produced from conventional vehicle resources is lost due to heat losses. An efficient waste heat recovery process will lead to improved fuel efficiency and greenhouse gas emissions. Thermoelectric generators (TEGs) are heat recovery devices that are being widely studied by a range of energy-intensive industries. Efficient solid-state thermoelectric devices are good candidates to reduce fuel consumption in an automobile. Thermoelectric materials have had limited automotive applications due to the automotive waste heat recovery temperature range, the rarity and toxicity of some materials, and the limited ability to mass manufacture thermoelectric devices from expensive TE materials. However, skutterudite is one class of material that has demonstrated significant promise in the transportation waste heat recovery temperature domain. Durability and reliability of the TEGs are the most significant concerns in the product development process. Cracking of the materials at hot-side interface is found to be a major failure mechanism of TEGs under thermal loading. Cracking affects not only the structural integrity but also the energy conversion and overall performance of the system. In this paper, cracking of thermoelectric material as observed in performance testing is analyzed using numerical simulations and analytic experiments. This paper shows, with the help of finite element analysis (FEA), the detailed distribution of stress, strain, and temperature is obtained for each design. Finite element (FE)-based simulations show the tensile stresses as the primary factor causing radial and circumferential cracks in the skutterudite. For a TEG design, loading conditions and closed-form analytical solutions of stress/strain distributions are derived. Scenarios with minimum tensile stresses are sought. These approaches yield the minimum of stress/strain fields which produce cracks. Finally, based on these analyses and computational fluid dynamics (CFD) studies, strategies in tensile stress reduction and failure prevention are proposed.

References

References
1.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
.
2.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
3.
Priest
,
M.
, and
Taylor
,
C.
,
2000
, “
Automobile Engine Tribology—Approaching the Surface
,”
Wear
,
241
(
2
), pp.
193
203
.
4.
Small
,
K. A.
, and
Van Dender
,
K.
,
2007
, “
Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect
,”
Energy J.
,
28
(
1
), pp.
25
51
.
5.
Liu
,
B.-T.
,
Chien
,
K.-H.
, and
Wang
,
C.-C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
(
8
), pp.
1207
1217
.
6.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
7.
Rowe
,
D. M.
,
1999
, “
Thermoelectrics: An Environmentally-Friendly Source of Electrical Power
,”
Renewable Energy
,
16
(
1
), pp.
1251
1256
.
8.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012401
.
9.
Xi
,
H.
,
Luo
,
L.
, and
Fraisse
,
G.
,
2007
, “
Development and Applications of Solar-Based Thermoelectric Technologies
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
923
936
.
10.
DiSalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
(
5428
), pp.
703
706
.
11.
Goldsmid
,
H.
, and
Douglas
,
R.
,
1954
, “
The Use of Semiconductors in Thermoelectric Refrigeration
,”
Br. J. Appl. Phys.
,
5
(
11
), pp.
386
390
.
12.
Hicks
,
L.
, and
Dresselhaus
,
M.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
(
19
), pp.
12727
12731
.
13.
Chen
,
M.
,
Lu
,
S.-S.
, and
Liao
,
B.
,
2005
, “
On the Figure of Merit of Thermoelectric Generators
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
37
41
.
14.
Tritt
,
T. M.
, and
Subramanian
,
M.
,
2006
, “
Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
,”
MRS Bull.
,
31
(
3
), pp.
188
198
.
15.
Schmidt
,
R. D.
,
Case
,
E. D.
,
Ni
,
J. E.
,
Sakamoto
,
J. S.
,
Trejo
,
R. M.
,
Lara-Curzio
,
E.
,
Payzant
,
E. A.
,
Kirkham
,
M. J.
, and
Peascoe-Meisner
,
R. A.
,
2012
, “
The Temperature Dependence of Thermal Expansion for p-Type Ce0.9Fe3.5Co0.5Sb12 and n-Type Co0.95Pd0.05Te0.05Sb3 Skutterudite Thermoelectric Materials
,”
Philos. Mag.
,
92
(
10
), pp.
1261
1286
.
16.
Goldsmid
,
H. J.
,
2000
,
Recent Trends in Thermoelectric Materials, Semiconductors and Semimetals
, Vol.
69
,
Academic Press
,
New York
, Chap. 1.
17.
Schmidt
,
R. D.
,
Case
,
E. D.
,
Ni
,
J. E.
,
Sakamoto
,
J. S.
,
Trejo
,
R. M.
, and
Lara-Curzio
,
E.
,
2012
, “
Temperature-Dependent Young's Modulus, Shear Modulus and Poisson's Ratio of p-Type Ce0.9Fe3.5Co0.5Sb12 and n-Type Co0.95Pd0.05Te0.05Sb3 Skutterudite Thermoelectric Materials
,”
Philos. Mag.
,
92
(
6
), pp.
727
759
.
18.
Hu
,
K. S.-Y.
,
Chi
,
K.
,
Shih
,
T.
, and
Schock
,
H. J.
,
2009
, “
Heat Transfer Enhancement in Thermoelectric-Power Generation
,”
AIAA
Paper No. 2009-1210.
19.
Case
,
E.
,
2012
, “
Thermal Fatigue and Waste Heat Recovery Via Thermoelectrics
,”
J. Electron. Mater.
,
41
(
6
), pp.
1811
1819
.
20.
Biswas
,
K.
,
He
,
J.
,
Blum
,
I. D.
,
Wu
,
C.-I.
,
Hogan
,
T. P.
,
Seidman
,
D. N.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2012
, “
High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures
,”
Nature
,
489
(
7416
), pp.
414
418
.
21.
Bangert
,
K.
,
2013
,
BMW Turbosteamer and Thermoelectric Generator Projects Aim to Harness Heat Energy
,
BMW
,
Munich, Germany
.
22.
Taylor
,
C. F.
,
1985
,
The Internal-Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
23.
Gau
,
C.
, and
Chung
,
C.
,
1991
, “
Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
858
864
.
24.
Yeh
,
L.
,
1995
, “
Review of Heat Transfer Technologies in Electronic Equipment
,”
ASME J. Electron. Packag.
,
117
(
4
), pp.
333
339
.
25.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
You do not currently have access to this content.