The multi-objective territorial particle swarm optimization (MOTPSO) technique is proposed in this work for the optimal design of steam surface condensers. The main objective of this work is to maximize the condensation rate in a condenser while the pressure loss is minimized. Various design parameters, such as the tube outside diameter, thickness, and pitch, are considered to find the optimal ones for shell and tube heat exchangers considered in this study. The two-dimensional computational fluid dynamics (CFD) analysis is performed to solve the fluid flow and heat transfer in the condenser to assess the performance of different designs.

References

References
1.
He
,
Y.
,
Tao
,
W.
,
Deng
,
B.
,
Li
,
X.
, and
Wu
,
Y.
,
2005
, “
Numerical Simulation and Experimental Study of Flow and Heat Transfer Characteristics of Shell Side Fluid in Shell-and-Tube Heat Exchangers
,”
5th International Conference on Enhanced Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
, Whistler, BC, Canada, Sept. 11–16,
R. K
.
Shah
,
M
.
Ishizuka
,
T. M
.
Rudy
, and
V. V
.
Wadekar
, eds., Engineering Conferences International, Hoboken, NJ, pp.
29
42
.
2.
Ramón
, I
. S.
, and
González
,
M. P.
,
2001
, “
Numerical Study of the Performance of a Church Window Tube Bundle Condenser
,”
Int. J. Therm. Sci.
,
40
(
2
), pp.
195
204
.
3.
Zeng
,
H.
,
Meng
,
J. A.
, and
Li
,
Z.
,
2012
, “
Numerical Study of a Power Plant Condenser Tube Arrangement
,”
Appl. Therm. Eng.
,
40
, pp.
294
303
.
4.
Kakac
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2012
,
Heat Exchangers: Selection, Rating, and Thermal Design
,
CRC Press
,
Boca Raton, FL
.
5.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
,
1998
, “
Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers—Part I: Foundation and Fluid Mechanics
,”
Numer. Heat Transfer, Part A
,
33
(
8
), pp.
799
816
.
6.
Davidson
,
B.
, and
Rowe
,
M.
,
1981
, “
Simulation of Power Plant Condenser Performance by Computational Methods: An Overview
,”
Power Condenser Heat Transfer Technology: Computer Modelling, Design, Fouling
,
Hemisphere
,
Washington, DC
, pp.
17
49
.
7.
Al-Sanea
,
S.
,
Rhodes
,
N.
,
Tatchell
,
D.
, and
Wilkinson
,
T.
,
1983
, “
A Computer Model for Detailed Calculation of the Flow in Power Station Condensers
,” Condensers: Theory and Practice (IChem E Symposium Series, Vol.
75
),
Pergamon
,
London
, pp.
70
88
.
8.
Al-Sanea
,
S.
,
Rhodes
,
N.
, and
Wilkinson
,
T.
,
1985
, “
Mathematical Modelling of Two-Phase Condenser Flows
,”
2nd International Conference on Multi-Phase Flow
(
ICMF '95
), Kyoto, Japan, Apr. 3–7,
BHRA
,
London
, pp.
169
182
.
9.
Rabas
,
T.
, and
Kassem
,
A.
,
1985
, “
The Effect of Equal Shellside Pressure Drops on the Thermal Performance of Single-Pass, X-Shell, Steam Condensers
,”
ASME
Paper No. HTD-44.
10.
Mcnaught
,
J.
, and
Cotchin
,
C.
,
1989
, “
Heat Transfer and Pressure Drop in a Shell and Tube Condenser With Plain and Low-Fin Tube Bundles
,”
Chem. Eng. Res. Des.
,
67
(
2
), pp.
127
133
.
11.
Bush
,
A.
,
Marshall
,
G.
, and
Wilkinson
,
T.
,
1990
, “
The Prediction of Steam Condensation Using a Three Component Solution Algorithm
,”
2nd International Symposium on Condensers and Condensation
, Bath, UK, Mar. 28–30, pp.
223
234
.
12.
Malin
,
M. R.
,
1997
, “
Modelling Flow in an Experimental Marine Condenser
,”
Int. Commun. Heat Mass Transfer
,
24
(
5
), pp.
597
608
.
13.
Roy
,
R.
,
Gokhale
,
V.
, and
Ratisher
,
M.
,
2001
, “
A Computational Model of a Power Plant Steam Condenser
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
81
91
.
14.
Prieto
,
M.
,
Suarez
,
I.
, and
Montanes
,
E.
,
2003
, “
Analysis of the Thermal Performance of a Church Window Steam Condenser for Different Operational Conditions Using Three Models
,”
Appl. Therm. Eng.
,
23
(
2
), pp.
163
178
.
15.
Ormiston
,
S.
,
Raithby
,
G.
, and
Carlucci
,
L.
,
1995
, “
Numerical Modeling of Power Station Steam Condensers—Part 1: Convergence Behavior of a Finite-Volume Model
,”
Numer. Heat Transfer
,
27
(
1
), pp.
81
102
.
16.
Ormiston
,
S.
,
Raithby
,
G.
, and
Carlucci
,
L.
,
1995
, “
Numerical Modeling of Power Station Steam Condensers—Part 2: Improvement of Solution Behavior
,”
Numer. Heat Transfer
,
27
(
1
), pp.
103
125
.
17.
Hu
,
H. G.
, and
Zhang
,
C.
,
2007
, “
A Modified K–Ε Turbulence Model for the Simulation of Two-Phase Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1641
1648
.
18.
Hu
,
H. G.
, and
Zhang
,
C.
,
2009
, “
Evaluations of Closure Correlations for the Simulation of Two-Phase Flows in Condensers
,”
Heat Transfer Eng.
,
30
(
6
), pp.
437
451
.
19.
Hu
,
H. G.
, and
Zhang
,
C.
,
2008
, “
A New Inundation Correlation for the Prediction of Heat Transfer in Steam Condensers
,”
Numer. Heat Transfer, Part A
,
54
(
1
), pp.
34
46
.
20.
Zhang
,
C.
,
1994
, “
Numerical Modeling Using a Quasi-Three-Dimensional Procedure for Large Power Plant Condensers
,”
ASME J. Heat Transfer
,
116
(
1
), pp.
180
188
.
21.
Zhang
,
C.
,
1996
, “
Local and Overall Condensation Heat Transfer Behavior in Horizontal Tube Bundles
,”
Heat Transfer Eng.
,
17
(
1
), pp.
9
30
.
22.
Zhang
,
C.
, and
Bokil
,
A.
,
1997
, “
A Quasi-Three-Dimensional Approach to Simulate the Two-Phase Fluid Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3537
3546
.
23.
Zhang
,
C.
,
Sousa
,
A.
, and
Venart
,
J.
,
1993
, “
The Numerical and Experimental Study of a Power Plant Condenser
,”
ASME J. Heat Transfer
,
115
(
2
), pp.
435
445
.
24.
Zhang
,
C.
,
Sousa
,
A.
, and
Venart
,
J.
,
1991
, “
Numerical Simulation of Different Types of Steam Surface Condensers
,”
ASME J. Energy Resour. Technol.
,
113
(
2
), pp.
63
70
.
25.
Zhang
,
C.
, and
Zhang
,
Y.
,
1993
, “
A Quasi-Three-Dimensional Approach to Predict the Performance of Steam Surface Condensers
,”
ASME J. Energy Resour. Technol.
,
115
(
3
), pp.
213
220
.
26.
Zhang
,
C.
, and
Zhang
,
Y.
,
1994
, “
Sensitivity Analysis of Heat Transfer Coefficient Correlations on the Predictions of Steam Surface Condensers
,”
Heat Transfer Eng.
,
15
(
2
), pp.
54
63
.
27.
Selbaş
,
R.
,
Kızılkan
,
Ö.
, and
Reppich
,
M.
,
2006
, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process. Process Intensif.
,
45
(
4
), pp.
268
275
.
28.
Ponce-Ortega
,
J. M.
,
Serna-González
,
M.
, and
Jiménez-Gutiérrez
,
A.
,
2009
, “
Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
29
(
2
), pp.
203
209
.
29.
Bell
,
K. J.
,
1988
, “
Delaware Method for Shell-Side Design
,”
Heat Transfer Equipment Design
,
R. K.
Shah
E. C.
Subbarao
, and
R. A.
Mashelkar
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
145
166
.
30.
Fesanghary
,
M.
,
Damangir
,
E.
, and
Soleimani
,
I.
,
2009
, “
Design Optimization of Shell and Tube Heat Exchangers Using Global Sensitivity Analysis and Harmony Search Algorithm
,”
Appl. Therm. Eng.
,
29
(
5
), pp.
1026
1031
.
31.
Patel
,
V. K.
, and
Rao
,
R. V.
,
2010
, “
Design Optimization of Shell-and-Tube Heat Exchanger Using Particle Swarm Optimization Technique
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1417
1425
.
32.
Jayalal
,
M. L.
,
Kumar
,
L. S.
,
Jehadeesan
,
R.
,
Rajeswari
,
S.
,
Murty
,
S. S.
,
Balasubramaniyan
,
V.
, and
Chetal
,
S. C.
,
2011
, “
Steam Condenser Optimization Using Real-Parameter Genetic Algorithm for Prototype Fast Breeder Reactor
,”
Nucl. Eng. Des.
,
241
(
10
), pp.
4136
4142
.
33.
Sanaye
,
S.
, and
Dehghandokht
,
M.
,
2011
, “
Modeling and Multi-Objective Optimization of Parallel Flow Condenser Using Evolutionary Algorithm
,”
Appl. Energy
,
88
(
5
), pp.
1568
1577
.
34.
Gholap
,
A. K.
, and
Khan
,
J. A.
,
2007
, “
Design and Multi-Objective Optimization of Heat Exchangers for Refrigerators
,”
Appl. Energy
,
84
(
12
), pp.
1226
1239
.
35.
Hajabdollahi
,
H.
,
Ahmadi
,
P.
, and
Dincer
,
I.
,
2011
, “
Thermoeconomic Optimization of a Shell and Tube Condenser Using Both Genetic Algorithm and Particle Swarm
,”
Int. J. Refrig.
,
34
(
4
), pp.
1066
1076
.
36.
Mirzabeygi
,
P.
, and
Zhang
,
C.
,
2015
, “
Three-Dimensional Numerical Model for the Two-Phase Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
81
, pp.
618
637
.
37.
Mirzabeygi
,
P.
, and
Zhang
,
C.
,
2015
, “
Turbulence Modeling for Two Phase Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
,
89
, pp.
229
241
.
38.
Nejat
,
A.
,
Mirzabeygi
,
P.
, and
Panahi
,
M. S.
,
2014
, “
Airfoil Shape Optimization Using Improved Multiobjective Territorial Particle Swarm Algorithm With the Objective of Improving Stall Characteristics
,”
Struct. Multidiscip. Optim.
,
49
(
6
), pp.
953
967
.
39.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, Perth, WA, Nov. 27–Dec. 1, pp.
1942
1948
.
40.
Banks
,
A.
,
Vincent
,
J.
, and
Anyakoha
,
C.
,
2007
, “
A Review of Particle Swarm Optimization—Part I: Background and Development
,”
Nat. Comput.
,
6
(
4
), pp.
467
484
.
41.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
2001
, “
Particle Swarm Optimization: Developments, Applications and Resources
,”
Congress on Evolutionary Computation
, Seoul, Korea, May 27–30, Vol.
1
, pp.
81
86
.
42.
Ostadmohammadi Arani
,
B.
,
Mirzabeygi
,
P.
, and
Shariat Panahi
,
M.
,
2013
, “
An Improved PSO Algorithm With a Territorial Diversity-Preserving Scheme and Enhanced Exploration–Exploitation Balance
,”
Swarm Evol. Comput.
,
11
, pp.
1
15
.
43.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-Ii
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
44.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Hoboken, NJ
.
45.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
You do not currently have access to this content.