In this work, the particles of two seaweeds, Enteromorpha clathrata (E. clathrata) (EN) and Sargassum natans (S. natans), were combusted in a fluidized bed. It was found that while combustion of EN particles was stable, there was a substantial slagging period during the combustion of S. natans particles. Seaweed and its bottom ash samples were collected, and their pore structures were determined with both mercury intrusion method and N2 adsorption–desorption method. The structural analysis revealed that the number of porosity, pore volume, and specific surface area was all increased and the internal pore in ash samples was expanded after combustion. Fractal analysis showed that while the surface of original seaweed was smooth, it became irregular and rough after combustion. This study has suggested that the ash of seaweeds with porous structure can be valuable for comprehensive utilization.

References

References
1.
Wang
,
S.
,
Jiang
,
X. M.
,
Han
,
X. X.
, and
Liu
,
J. G.
,
2009
, “
Combustion Characteristics of Seaweed Biomass. 1. Combustion Characteristics of Enteromorpha clathrata and Sargassum natans
,”
Energy Fuels
,
23
(
10
), pp.
5173
5178
.
2.
Jeong
,
J. H.
,
Jin
,
H. J.
,
Sohn
,
C. H.
,
Suh
,
K. H.
, and
Hong
,
Y. K. J.
,
2000
, “
Algicidal Activity of the Seaweed Corallina Pilulifera Against Red Tide Microalgae
,”
Appl. Phycol.
,
12
(
1
), pp.
37
43
.
3.
Anderson
,
D. M.
,
1997
, “
Turning Back the Harmful Red Tide
,”
Nature
,
388
(
6642
), pp.
513
514
.
4.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), pp.
103
116
.
5.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C. W.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), pp.
119
129
.
6.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), pp.
1119
1129
.
7.
Balakrishnan
,
A.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2015
, “
Combustion Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Jet A Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012202
.
8.
Romero
,
D.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2014
, “
Laminar Flame Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Diesel Flames
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), pp.
1492
1500
.
9.
Cubio
,
G. M.
,
Capareda
,
S. C.
, and
Alagao
,
F. B.
,
2014
, “
Real-Time Analysis of Engine Power, Thermal Efficiency, and Emission Characteristics Using Refined and Transesterified Waste Vegetable Oil
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), pp.
1492
1500
.
10.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2015
, “
Estimating the Theoretical Performance Limits of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021801
.
11.
Wang
,
J.
,
Wang
,
G. C.
,
Zhang
,
M. X.
,
Chen
,
M. Q.
,
Li
,
D. M.
,
Min
,
F. F.
,
Chen
,
M. G.
,
Zhang
,
S. P.
,
Ren
,
Z. W.
, and
Yan
,
Y. A.
,
2006
, “
Comparative Study of Thermolysis Characteristics and Kinetics of Seaweeds and Fir Wood
,”
Process. Biochem.
,
41
(
8
), pp.
1883
1886
.
12.
Wang
,
S.
,
Jiang
,
X. M.
,
Wang
,
N.
,
Yu
,
L. J.
,
Li
,
Z.
, and
He
,
P. M.
,
2007
, “
Research on Pyrolysis Characteristics of Seaweed
,”
Energy Fuels
,
21
(
6
), pp.
3723
3729
.
13.
Anastasakis
,
K.
,
Ross
,
A. B.
, and
Jones
,
J. M.
,
2011
, “
Pyrolysis Behaviour of the Main Carbohydrates of Brown Macro-Algae
,”
Fuel
,
90
(
2
), pp.
598
607
.
14.
Wang
,
S.
,
Jiang
,
X. M.
,
Han
,
X. X.
, and
Wang
,
H.
,
2008
, “
Fusion Characteristic Study on Seaweed Biomass Ash
,”
Energy Fuels
,
22
(
4
), pp.
2229
2235
.
15.
Chirone
,
R.
,
Salatino
,
P.
,
Scala
,
F.
,
Solimene
,
R.
, and
Urciuolo
,
M.
,
2008
, “
Fluidized Bed Combustion of Pelletized Biomass and Waste-Derived Fuels
,”
Combust. Flame
,
155
(
1–2
), pp.
21
36
.
16.
Urciuolo
,
M.
,
Solimene
,
R.
,
Chirone
,
R.
, and
Salatino
,
P.
,
2012
, “
Fluidized Bed Combustion and Fragmentation of Wet Sewage Sludge
,”
Exp. Therm. Fluid Sci.
,
43
(
11
), pp.
97
104
.
17.
Li
,
S. Y.
,
Li
,
Y. Y.
,
Lu
,
Q. G.
,
Zhu
,
J. G.
,
Yao
,
Y.
, and
Bao
,
S. L.
,
2014
, “
Integrated Drying and Incineration of Wet Sewage Sludge in Combined Bubbling and Circulating Fluidized Bed Units
,”
Waste Manage.
,
34
(
12
), pp.
2561
2566
.
18.
Scala
,
F.
, and
Chirone
,
R.
,
2008
, “
An SEM/EDX Study of Bed Agglomerates Formed During Fluidized Bed Combustion of Three Biomass Fuel
,”
Biomass Bioenergy
,
32
(
3
), pp.
252
266
.
19.
Miccio
,
F.
,
Scala
,
F.
, and
Chirone
,
R.
,
2005
, “
Fluidized Bed Combustion of a Biomass Fuel: Comparison Between Pilot Scale Experiments and Model Simulations
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
117
121
.
20.
Okasha
,
F.
,
2007
, “
Staged Combustion of Rice Straw in a Fluidized Bed
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
52
59
.
21.
Yu
,
L. J.
,
Wang
,
S.
,
Jiang
,
X. M.
,
Wang
,
N.
, and
Zhang
,
C. Q.
,
2008
, “
Thermal Analysis Studies on Combustion Characteristics of Seaweed
,”
J. Therm. Anal. Calorim.
,
93
(
3
), pp.
2611
2617
.
22.
Wang
,
S.
,
Jiang
,
X. M.
,
Wang
,
Q.
,
Han
,
X. X.
, and
Ji
,
H. S.
,
2013
, “
Experiment and Grey Relational Analysis of Seaweed Particle Combustion in a Fluidized Bed
,”
Energy Convers. Manage.
,
66
(
1
), pp.
115
120
.
23.
Supancic
,
K.
,
Obernberger
,
I.
,
Kienzl
,
N.
, and
Arich
,
A.
,
2014
, “
Conversion and Leaching Characteristics of Biomass Ashes During Outdoor Storage-Results of Laboratory Tests
,”
Biomass Bioenergy
,
61
(
2
), pp.
211
226
.
24.
Mei
,
L.
,
Lu
,
X. F.
,
Wang
,
Q. H.
,
Pan
,
Z.
,
Ji
,
X. Y.
,
Hong
,
Y.
,
Fang
,
C. Q.
,
Guo
,
H.
, and
Yang
,
X. D.
,
2014
, “
The Experimental Study Offly Ash Decarbonization on a Circulating Fluidized Bed Combustor
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
608
615
.
25.
Xiao
,
Q. H.
,
2000
, “
Preparation of Filling Master Batch of Oil Shale Ash
,”
China Plast.
,
14
(
10
), pp.
48
53
(in Chinese).
26.
Shawabkeh
,
R.
,
Al-Harahsheh
,
A.
, and
Al-Otoom
,
A.
,
2004
, “
Copper and Zinc Sorption by Treated Oil Shale Ash
,”
Sep. Purif. Technol.
,
40
(
3
), pp.
251
257
.
27.
Zou
,
M. J.
,
Wei
,
C. T.
,
Huang
,
Z. Q.
,
Zhang
,
M.
, and
Lv
,
X. C.
,
2015
, “
Experimental Study on Identification Diffusion Pores, Permeation Pores and Cleats of Coal Samples
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021201
.
28.
Dubinin
,
M. M.
,
1996
, “
Porous Structure and Adsorption Properties of Active Carbons
,”
Chemistry and Physics of Carbon
, Vol. 2,
P. L.
Walker
, Jr
.
, ed.,
Marcel Dekker
,
New York
.
29.
Neimark
,
A. V.
, and
Ravikovitch
,
P. I.
,
2001
, “
Capillary Condensation in MMS and Pore Structure Characterization
,”
Microporous Mesoporous Mater.
,
44–45
(
1
), pp.
697
707
.
30.
Donohue
,
M. D.
, and
Aranovich
,
G. L.
,
1998
, “
Adsorption Hysteresis in Porous Solids
,”
J. Colloid Interface Sci.
,
205
(
1
), pp.
121
130
.
31.
Yan
,
J. M.
,
Zhang
,
Q. Y.
, and
Gao
,
J. C.
,
1979
,
Adsorption and Condensation Surface and Pore of Solid
,
Science
,
Beijing
, pp.
118
124
(in Chinese).
32.
Avnir
,
D.
,
Farin
,
D.
, and
Pfeifer
,
P.
,
1984
, “
Molecular Fractal Surfaces
,”
Nature
,
308
(
5956
), pp.
261
263
.
33.
Avnir
,
D.
,
Farin
,
D.
, and
Pfeifer
,
P.
,
1985
, “
Surface Geometric Irregularity of Particulate Materials: The Fractal Approach
,”
J. Colloid Interface Sci.
,
103
(
1
), pp.
112
123
.
34.
Ismail
,
I. M. K.
, and
Pfeifer
,
P.
, “
Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks
,”
Langmuir
,
10
(
5
), pp.
1532
1538
.
You do not currently have access to this content.