Turbine blade surfaces are cooled by jet flow from expanded exit holes (EEHs) against the prevailing hot gas flow. The flow through EEH must be designed to form a film of cool air over the blade. Computational analyses are performed to examine the cooling effectiveness of flow from EEH over the suction side of a blade by solving conservation equations and the ideal gas equation of state for turbulent and compressible flow. For a sufficiently high coolant mass flow rate, the flow through EEH, which acts as a converging–diverging nozzle, is choked at the nozzle throat, resulting in a supersonic flow, a shock, and then a subsonic flow downstream. The location of the shock relative to the high-temperature gas flow determines the temperature distribution along the blade surface; which is analyzed in detail when the following conditions are varied: coolant mass flow rate, the temperature difference between gas-and coolant-flow, EEH location on the blade surface, EEH inclination angle to the blade surface, and exit-to-inlet area ratio (AR) of EEH. The film cooling effectiveness is calculated along the surface of the blade. The results show (1) increasing the coolant flow rate improves the effectiveness, (2) change in temperature difference between the mainstream and the coolant slightly affects the effectiveness, (3) inclination angle of EEH has a pronounced effect on film cooling and the corresponding effectiveness, (4) both the location of the EEH on a blade and the AR of the EEH slightly change the effectiveness.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggarf
,
F.
,
1974
, “
Effect of Hole Geometry and Density on Three Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
4.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schultz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
5.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurements in a Tabulated Passage With Internal Cross Flow
,”
ASME J. Turbomach.
,
123
(
4
), pp.
774
780
.
6.
Taslim
,
M. E.
, and
Ugarte
,
S.
,
2004
, “
Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes With Cross-Flow
,”
Int. J. Rotating Mach.
,
10
(
2
), pp.
145
153
.
7.
Forghan
,
F.
,
Narusawa
,
U.
, and
Metghalchi
,
M.
,
2010
, “
Discharge Coefficient of Expanded Exit Holes for Film Cooling of Turbine Blades
,”
J. Propul. Power
,
26
(
6
), pp.
1322
1325
.
8.
Barthet
,
S.
, and
Bario
,
F.
,
2001
, “
Experimental Investigation of Film Cooling Flow Induced by Shaped Holes
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
313
320
.
9.
Chen
,
P. H.
,
Hung
,
M. S.
, and
Ding
,
P. P.
,
2001
, “
Film Cooling Performance on Curved Walls With Compound Angle Hole Configuration
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
353
360
.
10.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2002
, “
A Converging Slot Hole Film Cooling Geometry-Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
11.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2002
, “
A Converging Slot Hole Film Cooling Geometry-Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
12.
Sargison
,
J. E.
,
Oldfield
,
M. L. G.
,
Guo
,
S. M.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2005
, “
Flow Visualization of the External Flow From a Converging Slot-Hole Film Cooling Geometry
,”
Exp. Fluids
,
38
(
3
), pp.
304
318
.
13.
Azzi
,
A.
, and
Jubran
,
B. A.
,
2007
, “
Numerical Modeling of Film Cooling From Converging Slot-Hole
,”
J. Heat Mass Transfer
,
43
(
4
), pp.
381
388
.
14.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2009
, “
Experimental Research on the Thermal Performance of Converging Slot Holes With Different Divergence Angles
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
808
817
.
15.
Liu
,
C. L.
,
Zhu
,
H. R.
,
Bai
,
J. T.
, and
Xu
,
D. C.
,
2010
, “
Film Cooling Performance of Converging Slot-Hole Rows on a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5232
5241
.
16.
Wilfert
,
G.
, and
Fottner
,
L.
,
1996
, “
The Aerodynamic Mixing Effect of Discrete Cooling Jet With Mainstream Flow on a Highly Loaded Turbine Blade
,”
ASME J. Turbomach.
,
118
(
3
), pp.
468
478
.
17.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
1998
, “
The Application of Thin-Film Technology to Measure Turbine-Vane Heat Transfer and Effectiveness in a Film-Cooled, Engine-Simulated Environment
,”
Int. J. Heat Fluid Flow
,
19
(
6
), pp.
594
600
.
18.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
19.
Saumweber
,
C.
,
Schultz
,
A.
, and
Witting
,
S.
,
2003
, “
Free-Stream Turbulence Effect on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
20.
Baheri-Islami
,
S.
, and
Jubran
,
B. A.
,
2012
, “
The Effect of Turbulence Intensity on Film Cooling of Gas Turbine Blade From Trenched Shaped Holes
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
831
840
.
21.
Baheri-Islami
,
S.
,
Alavi-Tabrizi
,
S. P.
,
Jubran
,
B. A.
, and
Esmaeilzadeh
,
E.
,
2010
, “
Influence of Trenched Shaped Holes on Turbine Blade Leading Edge Film Cooling
,”
Heat Transfer Eng.
,
31
(
10
), pp.
889
906
.
You do not currently have access to this content.