The MILD (moderate or intense low-oxygen dilution) combustion is characterized by low emission, stable combustion, and low noise for various kinds of fuel. This paper reports a numerical investigation of the effect of different nozzle configurations, such as nozzle number N, reactants jet velocity V, premixed and nonpremixed modes, on the characteristics of MILD combustion applied to one F class gas turbine combustor. An operating point is selected considering the pressure p = 1.63 MPa, heat intensity Pintensity = 20.5 MW/m3 atm, air preheated temperature Ta = 723 K, equivalence ratio φ = 0.625. Methane (CH4) is adopted as the fuel for combustion. Results show that low-temperature zone shrinks while the peak temperature rises as the nozzle number increases. Higher jet velocity will lead to larger recirculation ratio and the reaction time will be prolonged consequently. It is helpful to keep high combustion efficiency but can increase the NO emission obviously. It is also found that N = 12 and V = 110 m/s may be the best combination of configuration and operating point. The premixed combustion mode will achieve more uniform reaction zone, lower peak temperature, and pollutant emissions compared with the nonpremixed mode.

References

References
1.
Roediger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031503
.
2.
Blouch
,
J.
,
Li
,
H.
,
Mueller
,
M.
, and
Hook
,
R.
,
2012
, “
Fuel Flexibility in LM2500 and LM6000 Dry Low Emission Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
051503
.
3.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
1
), pp.
29
40
.
4.
Holdeman
,
J. D.
, and
Zhang
,
C. T.
,
2001
, “
Low Emissions RQL Flametube Combustor Component Test Results
,” Report No.
NASA
/TM-2001-210678.
5.
Carrera
,
A. M.
,
Jayasuriya
,
J.
, and
Fransson
,
T.
,
2013
, “
Staged Lean Catalytic Combustion of Gasified Biomass for Gas Turbine Applications: An Experimental Approach to Investigate Performance of Catalysts
,”
ASME
Paper No. GT2013-95339.
6.
Gupta
,
A. K.
,
2000
, “
Flame Characteristics and Challenges With High Temperature Air Combustion
,”
International Joint Power Generation Conference
, Miami Beach, FL, July 23–26, pp.
23
26
.
7.
Arghode
,
V. K.
,
2011
, “
Development of Colorless Distributed Combustion for Gas Turbine Application
,”
Ph.D. thesis
,
Department of Mechanical Engineering
,
University of Maryland, College Park, MD
.
8.
Li
,
P. F.
,
Mi
,
J. C.
,
Dally
,
B. B.
,
Wang
,
F.
,
Wang
,
L.
,
Liu
,
Z.
,
Chen
,
S.
, and
Zheng
,
C.
,
2011
, “
Progress and Recent Trend in MILD Combustion
,”
Sci. China: Technol. Sci.
,
54
(
2
), pp.
255
269
.
9.
Duwig
,
C.
,
Li
,
B.
,
Li
,
Z. S.
, and
Alden
,
M.
,
2012
, “
High Resolution Imaging of Flameless and Distributed Turbulent Combustion
,”
Combust. Flame
,
159
(
1
), pp.
306
316
.
10.
Wünning
,
J. A.
, and
Wünning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.
11.
Lammel
,
O.
,
Schtz
,
H.
,
Schamitz
,
G.
, et al. .,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.
12.
Galletti
,
C.
,
Parente
,
A.
, and
Tognotti
,
L.
,
2007
, “
Numerical and Experimental Investigation of a Mild Combustion Burner
,”
Combust. Flame
,
151
(
4
), pp.
649
664
.
13.
Mi
,
J.
,
Li
,
P.
, and
Zheng
,
C.
,
2010
, “
Numerical Simulation of Flameless Premixed Combustion With an Annular Nozzle in a Recuperative Furnace
,”
Chin. J. Chem. Eng.
,
18
(
1
), pp.
10
17
.
14.
Tu
,
Y.
,
Liu
,
H.
,
Chen
,
S.
, et al. .,
2015
, “
Effects of Furnace Chamber Shape on the MILD Combustion of Natural Gas
,”
Appl. Therm. Eng.
,
76
, pp.
64
75
.
15.
Duwig
,
C.
,
Stankovic
,
D.
,
Fuchs
,
L.
,
Li
,
G.
, and
Gutmark
,
E.
,
2008
, “
Experimental and Numerical Study of Flameless Combustion in a Model Gas
,”
Combust. Sci. Technol.
,
180
(
2
), pp.
270
295
.
16.
Seliger
,
H.
,
Huber
,
A.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of a FLOX®-Based Combustor for a Small-Scale Gas Turbine Based CHP System Under Atmospheric Conditions
,”
ASME
Paper No. GT2015-43094.
17.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX®-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2015-42313.
18.
Yang
,
W.
, and
Blasiak
,
W.
,
2005
, “
Numerical Study of Fuel Temperature Influence on Single Gas Jet Combustion in Highly Preheated and Oxygen Deficient Air
,”
Energy
,
30
(
2
), pp.
385
398
.
19.
Fureby
,
C.
,
2012
, “
A Comparative Study of Flamelet and Finite Rate Chemistry LES for a Swirl Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041503
.
20.
Mardani
,
A.
,
Tabejamaat
,
S.
, and
Mohammadi
,
M. B.
,
2011
, “
Numerical Study of the Effect of Turbulence on Rate of Reactions in the MILD Combustion Regime
,”
Combust. Theory Model.
,
15
(
6
), pp.
753
772
.
21.
Christo
,
F. C.
, and
Dally
,
B. B.
,
2005
, “
Modeling Turbulent Reacting Jets Issuing Into a Hot and Diluted Co-Flow
,”
Combust. Flame
,
142
(
1
), pp.
117
129
.
22.
Yang
,
W.
, and
Blasiak
,
W.
,
2005
, “
Mathematical Modeling of NO Emissions From High-Temperature Air Combustion With Nitrous Oxide Mechanism
,”
Fuel Process. Technol.
,
86
(
9
), pp.
943
957
.
23.
Galletti
,
C.
,
Parente
,
A.
, and
Tognotti
,
L.
,
2007
, “
Numerical and Experimental Investigation of a Mild Combustion Burner
,”
Combust. Flame
,
151
(
4
), pp.
649
664
.
24.
Parente
,
A.
,
Galletti
,
C.
, and
Tognotti
,
L.
,
2008
, “
Effect of the Combustion Model and Kinetic Mechanism on the MILD Combustion in an Industrial Burner Fed With Hydrogen Enriched Fuels
,”
Int. J. Hydrogen Energy
,
33
(
24
), pp.
7553
7564
.
25.
Mi
,
J.
,
Li
,
P.
, and
Zheng
,
C.
,
2011
, “
Impact of Injection Conditions on Flame Characteristics From a Parallel Multi-Jet Burner
,”
Energy
,
36
(
11
), pp.
6583
6595
.
26.
Danon
,
B.
,
Cho
,
E. S.
,
De Jong
,
W.
, et al. .,
2011
, “
Numerical Investigation of Burner Positioning Effects in a Multi-Burner Flameless Combustion Furnace
,”
Appl. Therm. Eng.
,
31
(
17
), pp.
3885
3896
.
27.
Vascellari
,
M.
, and
Cau
,
G.
,
2012
, “
Influence of Turbulence–Chemical Interaction on CFD Pulverized Coal MILD Combustion Modeling
,”
Fuel
,
101
, pp.
90
101
.
28.
Rottier
,
C.
,
Lacour
,
C.
,
Godard
,
G.
,
Taupin
,
B.
,
Porcheron
,
L.
, and
Hauguel
,
R.
,
2009
, “
On the Effect of Air Temperature on Mild Flameless Combustion Ragime of High Temperature Furnace
,”
Fourth European Combustion Meeting
, Vienna, Austria, Apr. 14–19.
29.
Khalil
,
A. E. E.
,
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Sang
,
C. L.
,
2012
, “
Low Calorific Value Fuelled Distributed Combustion With Swirl for Gas Turbine Applications
,”
Appl. Energy
,
98
, pp.
69
78
.
30.
Derudi
,
M.
,
Villani
,
A.
, and
Rota
,
R.
,
2007
, “
Sustainability of Mild Combustion of Hydrogen-Containing Hybrid Fuels
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3393
3400
.
31.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
4
), pp.
1096
1104
.
32.
Han
,
D.
, and
Mungal
,
M. G.
,
2001
, “
Direct Measurement of Entrainment in Reacting/Non-Reacting Turbulent Jets
,”
Combust. Flame
,
124
(
3
), pp.
370
386
.
33.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axis-Symmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(01), pp.
21
32
.
34.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
Appl. Energy
,
87
(
5
), pp.
1631
1640
.
35.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.
36.
Dandy
,
D. S.
, and
Vosen
,
S. R.
,
1992
, “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames
,”
Combust. Sci. Technol.
,
82
(
1–6
), pp.
131
150
.
37.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.
38.
Li
,
P.
,
Wang
,
F.
,
Mi
,
J.
,
Dally
,
B. B.
, and
Mei
,
Z.
,
2014
, “
MILD Combustion Under Different Premixing Patterns and Characteristics of the Reaction Regime
,”
Energy Fuels
,
28
(
3
), pp.
2211
2226
.
You do not currently have access to this content.