The carbonate looping process using the reversible calcination/carbonation reaction of limestone is a promising way to reduce CO2 emissions of fossil fired power plants. This paper describes the concept of an indirectly heated version of this process in which heat pipes accomplish the heat transfer from an air-blown fluidized bed combustor to a bubbling fluidized bed calciner. It defines the calciner's specific heat demand which is a pendant to the heating value of coal. The dimensioning depends on the processes inside heat pipes as well as heat transfer of immersed heating surfaces. Experimental investigations in an electrically heated batch reactor with a similar pipe grid provide heat transfer coefficients under calcination conditions.

References

References
1.
Herzog
,
H. J.
,
2001
, “
What Future for Carbon Capture and Sequestration?
,”
Environ. Sci. Technol.
,
35
(
7
), pp.
148A
153A
.
2.
Martelli
,
E.
,
Kreutz
,
T.
, and
Consonni
,
S.
,
2009
, “
Comparison of Coal IGCC With and Without CO2 Capture and Storage: Shell Gasification With Standard vs. Partial Water Quench
,”
Energy Procedia
,
1
(
1
), pp.
607
614
.
3.
Zahra
,
M. R. M. A.
,
Fernandez
,
E. S.
, and
Goetheer
,
E. L. V.
,
2011
, “
Guidelines for Process Development and Future Cost Reduction of CO2 Post-Combustion Capture
,”
Energy Procedia
,
4
, pp.
1051
1057
.
4.
Shimizu
,
T.
,
Hirama
,
T.
,
Hosoda
,
H.
,
Kitano
,
K.
,
Inagaki
,
M.
, and
Tejima
,
K.
,
1999
, “
A Twin Fluid-Bed Reactor for Removal of CO2 From Combustion Processes
,”
Chem. Eng. Res. Des.
,
77
(
1
), pp.
62
68
.
5.
Wang
,
J.
,
Anthony
,
E. J.
, and
Abanades
,
J. C.
,
2004
, “
Clean and Efficient Use of Petroleum Coke for Combustion and Power Generation
,”
Fuel
,
83
(
10
), pp.
1341
1348
.
6.
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Wang
,
J.
, and
Oakey
,
J. E.
,
2005
, “
Fluidized Bed Combustion Systems Integrating CO2 Capture With CaO
,”
Environ. Sci. Technol.
,
39
(
8
), pp.
2861
2866
.
7.
Ströhle
,
J.
,
Galloy
,
A.
, and
Epple
,
B.
,
2009
, “
Feasibility Study on the Carbonate Looping Process for Post-Combustion CO2 Capture From Coal-Fired Power Plants
,”
Energy Procedia
,
1
(
1
), pp.
1313
1320
.
8.
Ströhle
,
J.
,
Lasheras
,
A.
,
Galloy
,
A.
, and
Epple
,
B.
,
2009
, “
Simulation of the Carbonate Looping Process for Post-Combustion CO2 Capture From a Coal-Fired Power Plant
,”
Chem. Eng. Technol.
,
32
(
3
), pp.
435
442
.
9.
Blamey
,
J.
,
Anthony
,
E. J.
,
Wang
,
J.
, and
Fennell
,
P. S.
,
2010
, “
The Calcium Looping Cycle for Large-Scale CO2 Capture
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
260
279
.
10.
Cormos
,
C. C.
, and
Petrescu
,
L.
,
2014
, “
Evaluation of Calcium Looping as Carbon Capture Option for Combustion and Gasification Power Plants
,”
Energy Procedia
,
51
, pp.
154
160
.
11.
Epple
,
B.
, and
Seeber
,
J.
,
2011
, “
Verfahren und Einrichtung zur Abscheidung von CO2 aus Abgas
,” Patent No. EP2299176 A1.
12.
Junk
,
M.
,
Reitz
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2013
, “
Thermodynamic Evaluation and Cold Flow Model Testing of an Indirectly Heated Carbonate Looping Process
,”
Chem. Eng. Technol.
,
36
(
9
), pp.
1479
1487
.
13.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2013
, “
Self-Fluidization in an Indirectly Heated Calciner
,”
Chem. Eng. Technol.
,
36
(
9
), pp.
1533
1538
.
14.
Reitz
,
M.
,
Junk
,
M.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2014
, “
Design and Erection of a 300 kWth Indirectly Heated Carbonate Looping Test Facility
,”
Energy Procedia
,
63
, pp.
2170
2177
.
15.
Hawthorne
,
C.
,
Trossmann
,
M.
,
Cifre
,
P. G.
,
Schuster
,
A.
, and
Scheffknecht
,
G.
,
2009
, “
Simulation of the Carbonate Looping Power Cycle
,”
Energy Procedia
,
1
(
1
), pp.
1387
1394
.
16.
Notz
,
R. J.
,
Tönnies
,
I.
,
McCann
,
N.
,
Scheffknecht
,
G.
, and
Hasse
,
H.
,
2011
, “
CO2 Capture for Fossil Fuel-Fired Power Plants
,”
Chem. Eng. Technol.
,
34
(
2
), pp.
163
172
.
17.
Kew
,
P.
, and
Reay
,
D.
,
2006
,
Heat Pipes: Theory, Design and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
18.
V. D. I. Gesellschaft Verfahrenstechnik und Chemieingenieurwesen
,
2006
,
VDI-Wärmeatlas
,
Springer
,
Berlin, Germany
.
19.
Rodriguez
,
N.
,
Alonso
,
M.
,
Grasa
,
G.
, and
Abanades
,
J. C.
,
2008
, “
Heat Requirements in a Calciner of CaCO3 Integrated in a CO2 Capture System Using CaO
,”
Chem. Eng. J.
,
138
(
1–3
), pp.
148
154
.
20.
Sakadjian
,
B. B.
,
Iyer
,
M. V.
,
Gupta
,
H.
, and
Fan
,
L.-S.
,
2007
, “
Kinetics and Structural Characterization of Calcium-Based Sorbents Calcined Under Subatmospheric Conditions for the High-Temperature CO2 Capture Process
,”
Ind. Eng. Chem. Res.
,
46
(
1
), pp.
35
42
.
21.
Epple
,
B.
,
2013
, “
Verfahren und Anordnung zur Abscheidung von CO2 aus Verbrennungsabgas
,” Patent No. DE102008050816 B4.
22.
Epple
,
B.
, and
Seeber
,
J.
,
2011
, “
Regenerative Heat Exchanger and Method for Transferring Heat Between Two Solids
,” Patent No. EP2348272 A2.
23.
Ströhle
,
J.
,
Junk
,
M.
,
Höftberger
,
D.
,
Schüppel
,
B.
, and
Führer
,
M.
,
2011
, “
Annual Report 2010
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.
24.
Korolev
,
V. N.
, and
Syromyatnikov
,
N. I.
,
1980
, “
Hydrodynamics of a Fluidized Bed in the Intertube Space of Staggered and In-Line Tube Bundles
,”
Inzh.-Fiz. Zh.
,
38
(
5
), pp.
514
519
.
25.
Höftberger
,
D.
, and
Karl
,
J.
,
2012
, “
Deliverable D1.3.1—Results From Self-Fluidization Testing
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.
26.
Michel
,
W.
,
1992
,
Wirbelschichttechnik in der Energiewirtschaft
,
Deutscher Verlag für Grundstoffindustrie
,
Leipzig, Germany
.
27.
Höftberger
,
D.
,
Leimert
,
J.
, and
Karl
,
J.
,
2015
, “
Deliverable D6.2.1—Layout and Testing of Heat Pipes for the Full-Scale Plant
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.
You do not currently have access to this content.