A method for the experimental investigation of gas–solid reactions in a small-scale fluidized bed reactor (FBR) is presented. This methodology enables high heating rates (≈104 K/s), long timescale observation (up to several hours), operation with small fuel particles (≈100 μm), and accurate control of reaction conditions. In this study, the gasification reaction of biomass-based char particles with carbon dioxide–nitrogen gas mixtures is investigated under atmospheric pressure. On varying process temperature and feed-gas composition over a wide range, consistent results are realized (temperature is varied between 1173 and 1373 K, while the CO2 concentration is adjusted in an interval of 20% up to 80%). Carbon conversion curves and reaction rates are established from real-time gas product analysis by FTIR spectrometry through a detailed data analysis procedure. This procedure employs a particle surface-evolution model and accounts for sampling system signal attenuation. The obtained reaction rates are used to demonstrate the determination of kinetic parameters for different kinetic approaches concerning the heterogeneous CO2 gasification (Boudouard reaction). Throughout this study, a comparison of both different surface-evolution models as well as kinetic approaches with experimental results is performed for the inspection of best consistency.

References

References
1.
Kolb
,
T.
,
Aigner
,
M.
,
Kneer
,
R.
,
Müller
,
M.
,
Weber
,
R.
, and
Djordjevic
,
N.
,
2015
, “
Tackling the Challenges in Modelling Entrained-Flow Gasification of Low-Grade Feedstock
,”
J. Energy Inst.
(in press).
2.
Kramb
,
J.
,
Konttinen
,
J.
,
Gómez-Barea
,
A.
,
Moilanen
,
A.
, and
Umeki
,
K.
,
2014
, “
Modeling Biomass Char Gasification Kinetics for Improving Prediction of Carbon Conversion in a Fluidized Bed Gasifier
,”
Fuel
,
132
, pp.
107
115
.
3.
Müller
,
A.
,
Haustein
,
H. D.
,
Stösser
,
P.
,
Kreitzberg
,
T.
,
Kneer
,
R.
, and
Kolb
,
T.
,
2015
, “
Gasification Kinetics of Biomass- and Fossil-Based Fuels: Comparison Study Using Fluidized Bed and Thermogravimetric Analysis
,”
Energy Fuels
,
29
(
10
), pp.
6717
6723
.
4.
Haustein
,
H.
,
Kreitzberg
,
T.
,
Gövert
,
B.
,
Massmeyer
,
A.
, and
Kneer
,
R.
,
2015
, “
Establishment of Kinetic Parameters of Particle Reaction From a Well-Stirred Fluidized Bed Reactor
,”
Fuel
,
158
, pp.
263
269
.
5.
Tomasi Morgano
,
M.
,
Leibold
,
H.
,
Richter
,
F.
, and
Seifert
,
H.
,
2015
, “
Screw Pyrolysis With Integrated Sequential Hot Gas Filtration
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
216
224
.
6.
Everson
,
R. C.
,
Neomagus
,
H. W.
,
Kasaini
,
H.
, and
Njapha
,
D.
,
2006
, “
Reaction Kinetics of Pulverized Coal-Chars Derived From Inertinite-Rich Coal Discards: Gasification With Carbon Dioxide and Steam
,”
Fuel
,
85
, pp.
1076
1082
.
7.
Levenspiel
,
O.
,
1999
,
Chemical Reaction Engineering
,
Wiley
,
New York
.
8.
Matsui
,
I.
,
Kunii
,
D.
, and
Furusawa
,
T.
,
1987
, “
Study of Char Gasification by Carbon Dioxide—1: Kinetic Study by Thermogravimetric Analysis
,”
Ind. Eng. Chem. Res.
,
26
(
1
), pp.
91
95
.
9.
Gómez-Barea
,
A.
,
Ollero
,
P.
, and
Villanueva
,
A.
,
2006
, “
Diffusional Effects in CO2 Gasification Experiments With Single Biomass Char Particles—2: Theoretical Predictions
,”
Energy Fuels
,
20
(
5
), pp.
2211
2222
.
10.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
(Butterworth-Heinemann Series in Chemical Engineering),
Butterworth-Heinemann
,
London
.
11.
Abad
,
A.
,
Cardona
,
S.
,
Torregrosa
,
J.
,
Lopez
,
F.
, and
Navarro-Laboulais
,
J.
,
2005
, “
Flow Analysis Deconvolution for Kinetic Information Reconstruction
,”
J. Math. Chem.
,
38
(
2
), pp.
271
292
.
12.
Senneca
,
O.
,
2007
, “
Kinetics of Pyrolysis, Combustion and Gasification of Three Biomass Fuels
,”
Fuel Process. Technol.
,
88
(
1
), pp.
87
97
.
13.
Marquez-Montesinos
,
F.
,
Cordero
,
T.
,
Rodríguez-Mirasol
,
J.
, and
Rodríguez
,
J.
,
2002
, “
CO2 and Steam Gasification of a Grapefruit Skin Char
,”
Fuel
,
81
(
4
), pp.
423
429
.
14.
Barrio
,
M.
,
2002
, “
Experimental Investigation of Small-Scale Gasification of Wood Biomass
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
15.
Risnes
,
H.
,
Sørensen
,
L. H.
, and
Hustad
,
J. E.
,
2008
, “
CO2 Reactivity of Chars From Wheat, Spruce and Coal
,”
Progress in Thermochemical Biomass Conversion
, Blackwell Science, Oxford, UK, pp.
61
72
.
16.
DeGroot
,
W. F.
, and
Shafizadeh
,
F.
,
1984
, “
Kinetics of Gasification of Douglas Fir and Cottonwood Chars by Carbon Dioxide
,”
Fuel
,
63
(
2
), pp.
210
216
.
17.
Roberts
,
D.
, and
Harris
,
D.
,
2006
, “
A Kinetic Analysis of Coal Char Gasification Reactions at High Pressures
,”
Energy Fuels
,
20
(
6
), pp.
2314
2320
.
18.
Di Blasi
,
C.
,
2009
, “
Combustion and Gasification Rates of Lignocellulosic Chars
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
121
140
.
19.
Cetin
,
E.
,
Moghtaderi
,
B.
,
Gupta
,
R.
, and
Wall
,
T.
,
2005
, “
Biomass Gasification Kinetics: Influences of Pressure and Char Structure
,”
Combust. Sci. Technol.
,
177
(
4
), pp.
765
791
.
20.
Illerup
,
J. B.
, and
Rathmann
,
O.
,
1996
, “
CO2 Gasification of Wheat Straw, Barley Straw, Willow and Giganteus
,” Department of Combustion Research, RISØ National Laboratory, Roskilde, Denmark, Technical Report No. 873.
You do not currently have access to this content.