Tars produced during the thermal conversion of coal or especially biomass is one of the major obstacles for the application of gasification systems. They limit the use of the producer gas in engines or turbines or, in further processes like in methanization or conversion to other secondary fuels or chemicals, without further gas cleaning. The determination of the tar content with conventional methods is very time consuming and does not allow continuous online monitoring of the gas quality. One approach to avoid these drawbacks is an automatic system developed at the University of Stuttgart that monitors the tar concentration in the producer gas online and semicontinuous during the gasification process. The technique is based on a flame ionization detector (FID) difference measurement of the hydrocarbons in the producer gas, where the condensable hydrocarbons—the tars—are condensed on a suitable filter material. This work shows the further development of the measurement technique, the choice of a suitable tar filter material for the underlying difference measurement, and a first verification of the system with real producer gas at a 20 kWth bench scale gasifier.

References

References
1.
German Institute for Standardisation (DIN)
,
2006
, “Biomass Gasification—Tar and Particles in Product Gases—Sampling and Analysis,” Beuth Verlag, Berlin, Standard No. Norm DIN CEN/TS 15439:2006-08.
2.
Brage
,
C.
,
Yu
,
Q.
,
Chen
,
G.
, and
Sjöström
,
K.
,
1997
, “
Use of Amino Phase Adsorbent for Biomass Tar Sampling and Separation
,”
Fuel
,
76
(
2
), pp.
137
142
.
3.
Sun
,
R.
,
Zobel
,
N.
,
Neubauer
,
Y.
,
Chavez
,
C. C.
, and
Behrendt
,
F.
,
2010
, “
Analysis of Gas-Phase Polycyclic Aromatic Hydrocarbon Mixtures by Laser-Induced Fluorescence
,”
Opt. Lasers Eng.
,
48
(
12
), pp.
1231
1237
.
4.
Carpenter
,
D.
,
Deutch
,
S.
, and
French
,
R.
,
2007
, “
Quantitative Measurement of Biomass Gasifier Tars Using a Molecular-Beam Mass Spectrometer: Comparison With Traditional Impinger Sampling
,”
Energy Fuels
,
21
(
5
), pp.
3036
3043
.
5.
Fendt
,
A.
,
Streibel
,
T.
,
Sklorz
,
M.
,
Richter
,
D.
,
Dahmen
,
N.
, and
Zimmermann
,
R.
,
2012
, “
On-Line Process Analysis of Biomass Flash Pyrolysis Gases Enabled by Soft Photoionization Mass Spectrometry
,”
Energy Fuels
,
26
(
1
), pp.
701
711
.
6.
Neubauer
,
Y.
,
2008
, “
Online-Analyse von Teer aus der Biomassevergasung mit Lasermassenspektrometrie
,” Ph.D. thesis, TU, Berlin.
7.
Defoort
,
F.
,
Thiery
,
S.
, and
Ravel
,
S.
,
2014
, “
A Promising New On-Line Method of Tar Quantification by Mass Spectrometry During Steam Gasification of Biomass
,”
Biomass Bioenergy
,
65
, pp.
64
71
.
8.
Ahmadi
,
M.
,
Knoef
,
H.
,
Van de Beld
,
B.
,
Liliedahl
,
T.
, and
Engvall
,
K.
,
2013
, “
Development of a PID Based On-Line Tar Measurement Method—Proof of Concept
,”
Fuel
,
113
, pp.
113
121
.
9.
Herthan
,
T.
,
Moersch
,
O.
,
Spliethoff
,
H.
,
Berger
, R.
, and
Hein
,
K. R. G.
,
2001
, “
The Tar Analyzer—A Suitable Tool for the Development and Control of Gasifiers and Gas Cleaning Systems
,”
1st World Conference on Biomass for Energy and Industry
, Seville, Spain, June 5–9, pp. 1556–1559.
10.
Staiger
,
B.
,
Wiese
,
L.
,
Berger
,
R.
, and
Hein
,
K. R. G.
,
2004
, “
Investigations of Existing Gasifier-and Gas Cleaning Technologies With an Online Tar Measuring System
,”
2nd World Conference on Biomass for Energy, Industry and Climate Protection
, Rome, May 10–14, pp. 789–792.
11.
Knoef
,
H. A. M.
, ed., 2012,
Handbook Biomass Gasification
,
2nd ed.
,
BTG Biomass Technology Group
, Enschede, The Netherlands.
12.
Holm
,
T.
,
1999
, “
Aspects of the Mechanism of the Flame Ionization Detector
,”
J. Chromatogr.
,
842
(
1–2
), pp.
221
227
.
13.
Gans
,
W.
, and
Baumbach
,
G.
,
1985
,
Kalibrierverfahren zur quantitativen Bestimmung flüchtiger organischer Substanzen in Abluft und Abgasen mit dem Flammenionisationsdetektor Fortschrittsberichte VDI Reihe 15 Nr. 32
,
VDI Verlag
,
Düsseldorf, Germany
.
14.
Wandinger
,
H.
,
1995
, “
Messungen an Muellverbrennungsanlagen, Chemie Anlagen Verfahren,
” Konradin-Verlag Robert Kohlhammer GmbH, Leinfelden-Echterdingen, Germany.
15.
GKN
,
2015
, “
High Porosity Sintered Parts SIKA-B
,” GKN Sinter Metals Filters GmbH, Radevormwald, Germany, accessed Nov. 9, 2015, http://www.gkn-filters.de/downloads/pdf/download.php?filename=13_GKN_Filters_SIKA-B_V9_ENG.pdf
16.
Poboss
,
N.
, Swiecki, K., Charitos, A., Hawthorne, C., Zieba, M., and Scheffknecht, G.,
2012
, “
Experimental Investigation of the Absorption Enhanced Reforming of Biomass in a 20 kWth Dual Fluidized Bed System
,”
Int. J. Thermodyn., (IJoT)
,
15
(
1
), pp.
53
59
.
17.
ABB, 2015, “Advance Optima Integrated Analyzer System Solution,” ABB Inc., Wickliffe, OH, accessed Nov. 9, 2015, http://www.abb.com/product/seitp330/c1256dde004b6b1dc1256df1005210eb.aspx?productLanguage=ge&country=DE
18.
Agilent Technologies
,
2015
, “
GC Systems: 490 Micro GC
,” Agilent Technologies, Santa Clara, CA, accessed Nov. 9, 2015, http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Gas-Chromatography/490-Micro-GC/Pages/default.aspx
You do not currently have access to this content.