For chemical looping processes to become an economically viable technology, an inexpensive carrier that can endure repeated reduction and oxidation cycles needs to be identified or developed. Unfortunately, the reduction of hematite ore with methane in both batch and fluidized beds has revealed that the performance (methane conversion) decreases with time. Previous analysis had shown that the grains within the particle grew with the net effect of reducing the surface area of the particles and thereby reducing the rate and net conversion for a fixed reduction time. To improve the lifespan of hematite ore, it is hypothesized that if the grain size could be stabilized, then the conversion could be stabilized. In this work, series of tests were conducted in an electrically heated fluidized bed. The hematite ore was first pretreated at a temperature higher than the subsequent reduction temperatures. After pretreatment, the hematite ore was subjected to a series of cyclic reduction/oxidation experiments. The results show that the ore can be stabilized for cycles at different conditions up to the pretreatment temperature without any degradation. Details of the pretreatment process and the test results will be presented.

References

References
1.
Ciferno
,
J.
,
Litynski
,
J.
,
Brickett
,
L.
,
Murphy
,
J.
,
Munson
,
R.
,
Zaremsky
,
C.
,
Marano
,
J.
, and
Strock
,
J.
,
2011
, “
DOE/NETL Advanced CO2 Capture R&D Program: Technology Update
,”
U.S. Department of Energy
,
Morgantown, WV
.
2.
Wall
,
T. F.
,
2007
, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
31
47
.
3.
Fan
,
L. S.
,
2010
,
Chemical Looping Systems for Fossil Energy Conversion
,
Wiley
,
Hoboken, NJ
.
4.
Breault
,
R. W.
, and
Monazam
,
E. R.
,
2015
, “
Analysis of Fixed Bed Data for the Extraction of a Rate Mechanism for the Reaction of Hematite With Methane
,”
J. Ind. Eng. Chem.
,
29
, pp.
87
96
.
5.
Breault
,
R. W.
,
Monazam
,
E. R.
, and
Carpenter
,
J. T.
,
2015
, “
Analysis of Hematite Re-Oxidation in the Chemical Looping Process
,”
Appl. Energy
,
157
, pp.
174
182
.
6.
Breault
,
R. W.
, and
Monazam
,
E. R.
,
2014
, “
Fixed Bed Reduction of Hematite Under Alternating Reduction and Oxidation Cycles
,”
Appl. Energy
,
145
, pp.
180
190
.
7.
Abad
,
A.
,
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Johansson
,
M.
,
2007
, “
The Use of Iron as Oxygen Carrier in a Chemical-Looping Reactor
,”
Fuel
,
86
(
7–8
), pp.
1021
1035
.
8.
Abad
,
A.
,
Adanez
,
J.
,
Cuadrat
,
A.
,
Garcia-Labiano
,
F.
,
Gayan
,
P.
, and
de Diego
,
L. F.
,
2011
, “
Kinetics of Redox Reactions of Ilmenite for Chemical Looping Combustion
,”
Chem. Eng. Sci.
,
66
(
4
), pp.
689
702
.
9.
Adanez
,
J.
,
Garcia-Labiano
,
F.
,
de Diego
,
L. F.
,
Gayan
,
P.
,
Celaya
,
J.
, and
Abad
,
A.
,
2005
,
Characteristics of Oxygen Carriers for Chemical-Looping Combustion, Greenhouse Gas Control Technologies
, Vol.
1
,
E. S.
Rubin
,
D. W.
Keith
, and
C. F.
Gilboy
, eds.,
Elsevier Ltd.
,
London
.
10.
Chatterjee
,
A.
,
1994
,
Beyond the Blast Furnace
,
CRC Press
,
Boca Raton, FL
, p.
2
.
11.
Callister
,
W. D.
, Jr.
,
2000
,
Materials Science and Engineering Applications
,
Wiley
,
New York
.
12.
Bradshaw
,
A. V.
, and
Matas
,
A. G.
,
1976
, “
Structural Changes and Kinetics in the Gaseous Reduction of Hematite
,”
Metall. Trans. B
,
7
(
1
), pp.
81
87
.
13.
Bora
,
D. K.
,
Braun
,
A.
,
Erat
,
S.
,
Safonova
,
O.
,
Graule
,
T.
, and
Constable
,
E. C.
,
2012
, “
Evolution of Structural Properties of Iron Oxide Nano Particles During Temperature Treatment From 250 °C–900 °C: X-Ray Diffraction and Fe K-Shell Pre-Edge X-Ray Absorption Study
,”
Curr. Appl. Phys.
,
12
(
3
), pp.
817
825
.
14.
Tang
,
Y.
,
Qin
,
H.
,
Wu
,
K.
,
Guo
,
Q.
, and
Guo
,
J.
,
2013
, “
The Reduction and Oxidation of Fe2O3 (0001) Surface Investigated by Scanning Tunneling Microscopy
,”
Surf. Sci.
,
609
(
1
), pp.
67
72
.
15.
Kim
,
C.-Y.
,
Escuadro
,
A. A.
,
Bedzyk
,
M. J.
,
Liu
,
L.
, and
Stair
,
P. C.
,
2004
, “
X-Ray Scattering Study of the Stoichiometric Recovery of the α-Fe2O3 (0001) Surface
,”
Surf. Sci.
,
572
(
2
), pp.
239
246
.
16.
Breault
,
R. W.
,
Monazam
,
E. R.
, and
Carpenter
,
J. T.
,
2015
, “
Analysis of Hematite Re-Oxidation in the Chemical Looping Process
,”
Appl. Energy
,
157
, pp.
174
182
.
17.
Wang
,
L. Y.
,
2005
,
Ferrous Metallurgy (Ironmaking)
,
Metallurgical Industry Press
,
Beijing
, pp.
87
95
.
18.
Xiao
,
Q.
,
1991
,
Theory and Practice of Pelletizing
,
Central South University Press
,
Changsha, China
, pp.
93
97
.
19.
Li
,
J.
,
2007
,
Study on the Mechanism and Process of Direct Reduction of Pellets Made From Concentrate and Composites Binder
,
Central South University Press
,
Changsha, China
.
20.
Yi
,
L.
,
Huang
,
Z.
,
Jiang
,
T.
,
Wang
,
L.
, and
Qi
,
T.
,
2015
, “
Swelling Behavior of Iron Ore Pellet Reduced by H2–CO Mixtures
,”
Powder Technol.
,
269
, pp.
290
295
.
21.
Fick
,
A.
,
1855
, “
On Liquid Diffusion
,”
Poggendorffs Ann.
,
94
, p.
59
(reprinted in
J. Membr. Sci.
,
100
(
1
), pp. 33–38 (1995)).
22.
Radke
,
E.
,
Chen
,
J.
, and
Hayes
,
P.
,
2014
,
Reduction of Mn-Fe Oxides in CO/CO2 Gas Atmospheres Relevant to Chemical Looping Combustion Application
,
University of Queensland
,
Brisbane, Australia
.
23.
Simmonds
,
T.
,
Chen
,
J.
,
Jak
,
E.
, and
Hayes
,
P.
,
2014
,
Phase Transformations and Microstructure Changes in Iron Oxide CLC Based Carriers
,
University of Queensland
,
Brisbane, Australia
.
24.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
.
25.
Langmuir
,
I.
,
1916
, “
The Constitution and Fundamental Properties of Solids and Liquids
,”
J. Am. Chem. Soc.
,
38
(
11
), pp.
2221
2295
.
26.
Lanier
,
C. H.
,
Chiaramonti
,
A. N.
,
Marks
,
L. D.
, and
Poeppelmeier
,
K. R.
,
2009
, “
The Fe3O4 Origin of the ‘Biphase’ Reconstruction on A-Fe2O3 (0001)
,”
Surf. Sci.
,
603
(
16
), pp.
2574
2579
.
You do not currently have access to this content.