In military propulsion applications, the characterization of internal combustion engines operating with jet fuel is vital to understand engine performance, combustion phasing, and emissions when JP-8 is fully substituted for diesel fuel. In this work, high-resolution large eddy simulation (LES) simulations have been performed in-order to provide a comprehensive analysis of the detailed mixture formation process in engine sprays for nozzle configurations of interest to the Army. The first phase examines the behavior of a nonreacting evaporating spray, and demonstrates the accuracy in predicting liquid and vapor transient penetration profiles using a multirealization statistical grid-converged approach. The study was conducted using a suite of single-orifice injectors ranging from 40 to 147 μm at a rail pressure of 1000 bar and chamber conditions at 900 K and 60 bar. The next phase models the nonpremixed combustion behavior of reacting sprays and investigates the submodel ability to predict auto-ignition and lift-off length (LOL) dynamics. The model is constructed using a Kelvin Helmholtz–Rayleigh Taylor (KH–RT) spray atomization framework coupled to an LES approach. The liquid physical properties are defined using a JP-8 mixture containing 80% n-decane and 20% trimethylbenzene (TMB), while the gas phase utilizes the Aachen kinetic mechanism (Hummer, et al., 2007, “Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates, and Reference Components in Laminar Non Premixed Flows,” Proc. Combust. Inst., 31, pp. 393–400 and Honnet, et al., 2009, “A Surrogate Fuel for Kerosene,” Proc. Combust. Inst., 32, pp. 485–492) and a detailed chemistry combustion approach. The results are in good agreement with the spray combustion measurements from the Army Research Laboratory (ARL), constant pressure flow (CPF) facility, and provide a robust computational framework for further JP-8 studies of spray combustion.

References

References
1.
Siebers
,
S.
,
1998
, “
Liquid-Phase Fuel Penetration in Diesel Sprays
,”
SAE
Technical Paper No. 980809.
2.
Pickett
,
L.
,
Genzale
,
L.
,
Bruneaux
,
G.
,
Malbec
,
L.
,
Hermant
,
L.
,
Christiansen
,
C.
, and
Schramm
,
J.
,
2010
, “
Comparison of Diesel Spray Combustion in Different High-Temperature High-Pressure Facilities
,”
SAE Int. J. Engines
,
3
(
2
), pp.
156
181
.
3.
Payri
,
R.
,
García-Oliver
,
J. M.
,
Bardi
,
M.
, and
Manin
,
J.
,
2012
, “
Fuel Temperature Influence on Diesel Sprays in Inert and Reacting Conditions
,”
Appl. Therm. Eng.
,
35
, pp.
185
195
.
4.
Wang
,
Y. J.
,
Im
,
K. S.
,
Fezzaa
,
K.
,
Lee
,
W. K.
,
Wang
,
J.
,
Micheli
,
P.
, and
Laub
,
C.
,
2006
, “
Quantitative X-Ray Phase-Contrast Imaging of Air-Assisted Water Sprays With High Weber Numbers
,”
Appl. Phys. Lett.
,
89
(
15
), p.
151913
.
5.
Meyer
,
T. R.
,
Schmidt
,
J. B.
,
Nelson
,
S. M.
,
Drake
,
J. B.
,
Janvrin
,
D. M.
, and
Heindel
,
T. J.
,
2008
, “
Three-Dimensional Spray Visualization Using X-Ray Computed Tomography
,”
21st Annual Conference on Liquid Atomization and Spray Systems
, Orlando, FL.
6.
Coletti
,
F.
,
Benson
,
M.
,
Sagues
,
A.
,
Miller
,
B.
,
Fahrig
,
R.
, and
Eaton
,
J.
,
2014
, “
Three-Dimensional Mass Fraction Distribution of a Spray Measured by X-Ray Computed Tomography
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051508
.
7.
Kastengren
,
A.
,
Powell
,
C.
,
Liu
,
Z.
,
Moon
,
S.
,
Gao
,
J.
,
Zhang
,
X.
, and
Wang
,
J.
,
2010
, “
Axial Development of Diesel Sprays at Varying Ambient Density
,”
22nd Annual Conference of Liquid Atomization and Spray Systems
, Cincinnati, OH.
8.
Kastengren
,
A.
,
Tilocco
,
F.
,
Powell
,
C.
,
Manin
,
J.
,
Pickett
,
L.
,
Payri
,
R.
, and
Bazyn
,
T.
,
2012
, “
Engine Combustion Network (ECN): Measurements of Nozzle Geometry and Hydraulic Behavior
,”
Atomization Sprays
,
22
(
12
), pp.
1011
1052
.
9.
Banerjee
,
S.
, and
Rutland
,
C.
,
2012
, “
On LES Grid Criteria for Spray Induced Turbulence
,”
SAE
Technical Paper No. 2012-01-0141.
10.
Bharadwaj
,
N.
,
Rutland
,
C.
, and
Chang
,
S.
,
2009
, “
Large Eddy Simulation Modelling of Spray-Induced Turbulence Effects
,”
Int. J. Engine Res.
,
10
(
2
), pp.
97
119
.
11.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2014
, “
Grid-Convergent Spray Models for Internal Combustion Engine CFD Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012204
.
12.
Som
,
S.
, and
Aggarwal
,
S. K.
,
2010
, “
Effects of Primary Breakup Modeling on Spray and Combustion Characteristics of Compression Ignition Engines
,”
Combust. Flame
,
157
(
6
), pp.
1179
1193
.
13.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Xue
,
Q.
,
Som
,
S.
,
Banerjee
,
S.
,
Hu
,
B.
,
Liu
,
K.
, and
Duer
,
J. M.
,
2014
, “
Large Eddy Simulations of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
111504
.
14.
Xue
,
Q.
,
Som
,
W.
, and
Senecal
,
P. K.
,
2013
, “
A Study of Grid Resolution and SGS Models for LES Under Non-Reacting Spray Conditions
,”
25th Annual Conference on Liquid Atomization and Spray Systems
, Pittsburgh, PA.
15.
Hummer
,
S.
,
Frassoldati
,
A.
,
Granata
,
S.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2007
, “
Experimental and Kinetic Modeling Study of Combustion of JP-8, Its Surrogates, and Reference Components in Laminar Non Premixed Flows
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
393
400
.
16.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.
17.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2015
, “
CONVERGE (Version 2.2) Manual
,” Convergent Science, Inc., Madison, WI.
18.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Non-Viscosity Large Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
19.
Pomraning
,
E.
,
2000
, “
Development of Large Eddy Simulation Turbulence Models
,”
Ph.D. thesis
, University of Wisconsin, Madison, WI.
20.
Reitz
,
R.
, and
Diwakar
,
R.
,
1986
, “
Effect of Drop Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 860469.
21.
Raju
,
M.
,
Wang
,
M.
, and
Senecal
,
P.
,
2013
, “
Dynamic Chemical Mechanism Reduction for Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1110.
22.
Pomraning
,
E.
,
Richards
,
E.
, and
Senecal
,
P. K.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Technical Paper No. 2014-01-1116.
23.
Babajimopoulos
,
A. D.
,
Assanis
,
N. D.
,
Flowers
,
L. S.
,
Aceves
,
M. R.
, and
Hessel
,
P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
24.
Lucchini
,
T.
,
D'Errico
,
G. D.
,
Ettore
,
D.
, and
Ferrari
,
G.
,
2009
, “
Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels
,”
SAE
Technical Paper No. 2009-01-1971.
25.
Raju
,
M.
,
Wang
,
M.
,
Dai
,
M.
,
Piggott
,
W.
, and
Flowers
,
D.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2012-01-0135.
26.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Anders
,
J. W.
,
Weber
,
M. R.
,
Gehrke
,
C. R.
,
Polonowski
,
C. J.
, and
Mueller
,
C. J.
,
2014
, “
Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111505
.
27.
Shen
,
H.-P. S.
,
Steinberg
,
J.
,
Vanderover
,
J.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures
,”
Energy Fuels
,
23
(
5
), pp.
2482
2489
.
28.
Dievart
,
P.
,
Kim
,
H. H.
,
Won
,
S. H.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Dooley
,
S.
,
Wang
,
W.
, and
Oehlschlaeger
,
M. A.
,
2013
, “
The Combustion Properties of 1,3,5-Trimethylbenzene and a Kinetic Model
,”
Fuel
,
109
, pp.
125
136
.
29.
Kurman
,
M.
,
Bravo
,
L.
,
Kweon
,
C. B.
, and
Tess
,
M.
,
2014
, “
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions
,”
26th Annual Conference on Liquid Atomization and Spray Systems
, Portland, OR.
30.
Kurman
,
T.
,
Tess
,
M.
,
Bravo
,
L.
, and
Kweon
,
C. B.
,
2014
, “
Integral Scale Effects on JP-8 Spray Penetration and Ignition at Elevated Pressure and Temperature Conditions
,”
67th Annual Meeting of the
APS
Division of Fluid Dynamics, San Francisco, CA, Nov. 23–25.
31.
Temme
,
J. E.
,
Kurman
,
M. S.
, and
Kweon
,
C. B.
,
2016
, “
Characterization of Alternative Jet Fuel Spray and Combustion at Engine Relevant Ambient Conditions
,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, July 25–27.
32.
Bravo
,
L.
,
Kurman
,
M.
, and
Kweon
,
C. B.
,
2014
, “
Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates
,”
26th Annual Conference on Liquid Atomization and Spray Systems
Portland, OR.
You do not currently have access to this content.