Conventional noncatalytic fuel reforming provides low efficiency, large amounts of char and tar and limited control on chemical composition of the syngas produced. The distributed reaction regime can be used to assist noncatalytic reforming. In this paper, volume distributed reaction technique is used to enhance reformate quality as compared to conventional noncatalytic reforming. This work examines the intermediate regimes between volume distributed reaction and conventional flame to reform JP8 with focus on the chemical and mixing time scales. Chemical time scales were controlled with air preheat temperatures while the mixing time scales were kept constant. Progressive shift toward distributed reaction regime resulted in higher quality reformate with increased amounts of hydrogen and carbon monoxide in the syngas, but with reduced acetylene concentrations and soot formation. Visible soot formation was observed on reactor walls only under the flamelets in eddies regime. Higher hydrogen and carbon monoxide without any catalyst for JP8 reformation offers significant advantages on cost-effective plant operation, reliability, and high yields of syngas. Air preheats of 600, 630, and 660 °C showed a distributed reaction regime wherein the Damkohler number was below the Damkohler criterion, and this condition provided high H2 and CO yields and no soot. At temperature of 690 °C, laminar flame thickness approximated the integral length scale (at the interface of distributed and traditional reforming flame) showed minor soot formation. At even higher temperature of 750 °C, conventional reforming occurred with increased soot observed.

References

References
1.
Pastore
,
A.
,
2010
, “
Syngas Production From Heavy Liquid Fuel Reforming in Inert Porous Media
,” University of Cambridge, Cambridge, UK, https://www.repository.cam.ac.uk
2.
Al-Hamamre
,
Z.
,
Deizinger
,
S.
,
Mach
,
A.
,
Issendorff
,
F.
, and
Trimis
,
D.
,
2006
, “
Thermal Partial Oxidation of Diesel in Porous Reactor for Synthesis Gas Production
,”
Clean Air
,
7
(
4
), pp.
391
408
.
3.
Roth
,
K.
, and
Wirtz
,
S.
,
2007
, “
Investigation of Soot Formation During Partial Oxidation of Diesel Fuel
,”
Chem. Eng. Technol.
,
30
(
6
), pp.
782
789
.
4.
Chen
,
C.
,
Sur
,
S.
,
Thayer
,
J.
,
Pearlman
,
H.
, and
Ronney
,
P.
,
2013
, “
A Non-Catalytic Fuel-Flexible Reformer
,”
8th U.S. National Combustion Meeting Western State Section
, Park City, UT, May 19–22, pp.
1
7
.
5.
Pastore
,
A.
, and
Mastorakos
,
E.
,
2011
, “
Syngas Production From Liquid Fuels in a Non-Catalytic Porous Burner
,”
Fuel
,
90
(
1
), pp.
64
76
.
6.
Smith
,
C.
,
2012
, “
Studies of Rich and Ultra-Rich Combustion for Syngas Production
,” University of Texas at Austin, Austin, TX, repositories.lib.utexas.edu/
7.
Al-Hamamre
,
Z.
, and
Al-Zoubi
,
A.
,
2010
, “
The Use of Inert Porous Media Based Reactors for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
5
), pp.
1971
1986
.
8.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2003
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton, FL
.
9.
Khalil
,
A. E. E.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032201
.
10.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
Appl. Energy
,
87
(
5
), pp.
1631
1640
.
11.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2015
, “
Partial Oxidation of JP8 in a Distributed Reactor
,”
Fuel Process. Technol.
,
134
(
1
), pp.
205
213
.
12.
Muguerza
,
R. R.
,
Caldeira
,
A. B.
, and
Fachini
,
F. F.
,
2011
, “
Analysis of Scales for Flameless Combustion
,”
IV Fast Workshop on Applied and Computational Mathematics
, Trujillo, Peru, Jan. 5–6, p.
17
.
13.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
,
Elsevier
,
Burlington, MA
.
14.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, New York
.
15.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
1
), pp.
29
40
.
16.
Kumar
,
P.
, and
Ganesan
,
R.
,
2012
, “
A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow
,”
Eng. Technol.
,
6
(
8
), pp.
695
702
.
17.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
18.
Arghode
,
V. K.
,
2011
, “
Development of Colorless Distributed Combustion for Gas Turbine Applications
,” Ph.D. thesis, University of Maryland, College Park, MD.
19.
Doosje
,
E.
,
2010
,
Limits of Mixture Dilution in Engines
,
Eindhoven University Press
,
Eindhoven, The Netherlands
.
20.
Reaction Design
,
2013
,
Chemkin-Pro 15131
,
Reaction Design
,
San Diego, CA
.
21.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
22.
Violi
,
A.
,
Yan
,
S.
, and
Eddings
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
418
.
23.
Khalil
,
A. E. E.
,
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2013
, “
Novel Mixing for Ultra-High Thermal Intensity Distributed Combustion
,”
Appl. Energy
,
105
, pp.
327
334
.
24.
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Bryden
,
K. M.
,
2012
, “
High Intensity Colorless Distributed Combustion for Ultra Low Emissions and Enhanced Performance
,”
Appl. Energy
,
92
, pp.
822
830
.
25.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2011
, “
Swirling Distributed Combustion for Clean Energy Conversion in Gas Turbine Applications
,”
Appl. Energy
,
88
(
11
), pp.
3685
3693
.
26.
Li
,
L.
, and
Sunderland
,
P. B.
,
2012
, “
An Improved Method of Smoke Point Normalization
,”
Combust. Sci. Technol.
,
184
(
6
), pp.
829
841
.
27.
Ruiz
,
M. P.
,
Callejas
,
A.
,
Millera
,
A.
,
Alzueta
,
M. U.
, and
Bilbao
,
R.
,
2007
, “
Soot Formation From C2H2 and C2H4 Pyrolysis at Different Temperatures
,”
J. Anal. Appl. Pyrolysis
,
79
(
1–2
), pp.
244
251
.
28.
Hartmann
,
L.
,
Lucka
,
K.
, and
Köhne
,
H.
,
2003
, “
Mixture Preparation by Cool Flames for Diesel-Reforming Technologies
,”
J. Power Sources
,
118
(
1–2
), pp.
286
297
.
You do not currently have access to this content.