Ignition and flame propagation in methane/O2 mixtures diluted with CO2 are studied. A laser ignition system and dynamic pressure transducer are utilized to ignite the mixture and to record the combustion pressure, respectively. The laminar burning velocities (LBVs) are obtained at room temperature and atmospheric pressure in a spherical combustion chamber. Flame initiation and propagation are recorded by using a high-speed camera in select experiments to visualize the effect of CO2 proportionality on the combustion behavior. The LBV is studied for a range of equivalence ratios (ϕ = 0.8–1.3, in steps of 0.1) and oxygen ratios, D = O2/(O2 + CO2) (26–38% by volume). It was found that the LBV decreases by increasing the CO2 proportionality. It was observed that the flame propagates toward the laser at a faster rate as the CO2 proportionality increases, where it was not possible to obtain LBV due to the deviation from spherical flame shape. Current LBV data are in very good agreement with existing literature data. The premixed flame model from chemkin pro (Reaction Design, 2011, CHEMKIN-PRO 15112, Reaction Design, San Diego, CA) software and two mechanisms (GRI-Mech 3.0 (Smith et al., 1999, “The GRI 3.0 Chemical Kinetic Mechanism,” http://www.me.berkeley.edu/gri_mech/) and ARAMCO Mech 1.3 (Metcalfe et al., 2013, “A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels,” Int. J. Chem. Kinetics, 45(10), pp. 638–675)) are used to simulate the current data. In general, simulations are in reasonable agreement with current data. Additionally, sensitivity analysis is carried out to understand the important reactions that influence the predicted flame speeds. Improvements to the GRI predictions are suggested after incorporating latest reaction rates from literature for key reactions.

References

References
1.
Pires
,
J. C. M.
,
Martins
,
F. G.
,
Alvim-Ferraz
,
M. C. M.
, and
Simões
,
M.
,
2011
, “
Recent Developments on Carbon Capture and Storage: An Overview
,”
Chem. Eng. Res. Des.
,
89
(
9
), pp.
1446
1460
.
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Drscoll
,
M. J.
,
2006
,
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,
American Nuclear Society
,
La Grange Park, IL
.
3.
Gibbins
,
J.
, and
Chalmers
,
H.
,
2008
, “
Carbon Capture and Storage
,”
Energy Policy
,
36
(
12
), pp.
4317
4322
.
4.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2 Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
, pp.
626
634
.
5.
Xie
,
Y.
,
Wang
,
J.
,
Zhang
,
M.
,
Gong
,
J.
,
Jin
,
W.
, and
Huang
,
Z.
,
2013
, “
Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-Fuel Mixtures Highly Diluted With CO2
,”
Energy Fuels
,
27
(
10
), pp.
6231
6237
.
6.
Konnov
,
A. A.
, and
Dyakov
,
I. V.
,
2005
, “
Measurement of Propagation Speeds in Adiabatic Cellular Premixed Flames of CH4 + O2 + CO2
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
901
907
.
7.
Mazas
,
A. N.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.
8.
Heil
,
P.
,
Toporov
,
D.
,
Förster
,
M.
, and
Kneer
,
R.
,
2011
, “
Experimental Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3407
3413
.
9.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
10.
Hinton
,
N.
, and
Stone
,
R.
,
2014
, “
Laminar Burning Velocity Measurements of Methane and Carbon Dioxide Mixtures (Biogas) Over Wide Ranging Temperatures and Pressures
,”
Fuel
,
116
, pp.
743
750
.
11.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.
12.
Di Benedetto
,
A.
,
Cammarota
,
F.
,
Di Sarli
,
V.
,
Salzano
,
E.
, and
Russo
,
G.
,
2012
, “
Reconsidering the Flammability Diagram for CH4/O2/N2 and CH4/O2/CO2 Mixtures in Light of Combustion-Induced Rapid Phase Transition
,”
Chem. Eng. Sci.
,
84
, pp.
142
147
.
13.
de Persis
,
S.
,
Foucher
,
F.
,
Pillier
,
L.
,
Osorio
,
V.
, and
Gökalp
,
I.
,
2013
, “
Effects of O2 Enrichment and CO2 Dilution on Laminar Methane Flames
,”
Energy
,
55
, pp.
1055
1066
.
14.
Farrell
,
J.
,
Johnston
,
R.
, and
Androulakis
,
I.
,
2004
, “
Molecular Structure Effects on Laminar Burning Velocities at Elevated Temperature and Pressure
,”
SAE
Technical Paper No. 2004-01-2936.
15.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
16.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
17.
Srivastava
,
D. K.
,
Wintner
,
E.
, and
Agarwal
,
A. K.
,
2014
, “
Effect of Laser Pulse Energy on the Laser Ignition of Compressed Natural Gas Fueled Engine
,”
Opt. Eng.
,
53
(
5
), p.
056120
.
18.
Tsunekane
,
M.
,
Inohara
,
T.
,
Kanehara
,
K.
, and
Taira
,
T.
,
2010
, “
Micro-Solid-State Laser for Ignition of Automobile Engines
,”
Advances in Solid-State Lasers: Development and Applications
,
M
,
Grishin
, ed., InTech, Croatia, pp.
195
212
.
19.
Srivastava
,
D. K.
,
Dharamshi
,
K.
, and
Agarwal
,
A. K.
,
2011
, “
Flame Kernel Characterization of Laser Ignition of Natural Gas–Air Mixture in a Constant Volume Combustion Chamber
,”
Opt. Lasers Eng.
,
49
(
9
), pp.
1201
1209
.
20.
Tauer
,
J.
,
Kofler
,
H.
, and
Wintner
,
E.
,
2010
, “
Laser-Initiated Ignition
,”
Laser Photon. Rev.
,
4
(
1
), pp.
99
122
.
21.
Dincer
,
I.
, and
Zamfirescu
,
C.
,
2014
,
Advanced Power Generation Systems
,
Elsevier Science
,
Oxford, UK
.
22.
Saeed
,
K.
, and
Stone
,
C. R.
,
2004
, “
Measurements of the Laminar Burning Velocity for Mixtures of Methanol and Air From a Constant-Volume Vessel Using a Multizone Model
,”
Combust. Flame
,
139
(
1–2
), pp.
152
166
.
23.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
24.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
25.
Aggarwal
,
S. K.
,
2009
, “
Extinction of Laminar Partially Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
528
570
.
26.
Chen
,
Z.
,
2009
, “
Studies on the Initiation, Propagation, and Extinction of Premixed Flames
,”
D.Phil. thesis
, Princeton University, Princeton, NJ.
27.
Metghalchi
,
M.
,
1976
, “
Laminar Burning Velocity of Isooctane–Air, Methane–Air and Methanol–Air Mixtures at High Temperature and Pressure
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.
28.
Miao
,
H.
, and
Liu
,
Y.
,
2014
, “
Measuring the Laminar Burning Velocity and Markstein Length of Premixed Methane/Nitrogen/Air Mixtures With the Consideration of Nonlinear Stretch Effects
,”
Fuel
,
121
, pp.
208
215
.
29.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
The GRI 3.0 Chemical Kinetic Mechanism
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
30.
Lewis
,
B.
, and
Von Elbe
,
G.
,
2012
,
Combustion, Flames and Explosions of Gases
,
Elsevier
,
UK
.
31.
Hill
,
P. G.
, and
Hung
,
J.
,
1988
,
Laminar Burning Velocities of Stoichiometric Mixtures of Methane With Propane and Ethane Additives
,”
Combust. Sci. Technol.
,
60
(
1–3
), pp.
7
30
.
32.
Kistler USA,
2014
, “
Piezoelectric Pressure Sensor
,” Kistler Instrument Corp., Amherst, NY, http://www.kistler.com/us/en/
33.
National Instruments, 2015, “
NI PCI-6259
,” National Instruments Corp., Austin, TX, http://sine.ni.com/nips/cds/view/p/lang/en/nid/14128
34.
Morley
,
C.
, 2006,
GASEQ: A Chemical Equilibrium Program for Windows
,” http://www.c.morley.dsl.pipex.com/
35.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanso
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O2 + CO2 -> HO2 + CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
.
36.
Bradley
,
D.
,
Sheppard
,
C. G. W.
,
Suardjaja
,
I. M.
, and
Woolley
,
R.
,
2004
, “
Fundamentals of High-Energy Spark Ignition With Lasers
,”
Combust. Flame
,
138
(1–2), pp.
55
77
.
37.
Böker
,
D.
, and
Brüggemann
,
D.
,
2011
, “
Advancing Lean Combustion of Hydrogen–Air Mixtures by Laser-Induced Spark Ignition
,”
Int. J. Hydrogen Energy
,
36
(
22
), pp.
14759
14767
.
38.
Morsy
,
M. H.
, and
Chung
,
S. H.
,
2002
, “
Numerical Simulation of Front Lobe Formation in Laser-Induced Spark Ignition of CH4/Air Mixtures
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1613
1619
.
39.
Reaction Design
,
2011
, CHEMKIN-PRO 15112,
Reaction Design
,
San Diego, CA
.
40.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinetics
,
45
(
10
), pp.
638
675
.
41.
Liang
,
W.
,
Chen
,
Z.
,
Yang
,
F.
, and
Zhang
,
H.
,
2013
, “
Effects of Soret Diffusion on the Laminar Flame Speed and Markstein Length of Syngas/Air Mixtures
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
695
702
.
42.
Xin
,
Y.
,
Sung
,
C.-J.
, and
Law
,
C. K.
,
2012
, “
A Mechanistic Evaluation of Soret Diffusion in Heptane/Air Flames
,”
Combust. Flame
,
159
(
7
), pp.
2345
2351
.
43.
Yang
,
F.
,
Law
,
C. K.
,
Sung
,
C. J.
, and
Zhang
,
H. Q.
,
2010
, “
A Mechanistic Study of Soret Diffusion in Hydrogen–Air Flames
,”
Combust. Flame
,
157
(
1
), pp.
192
200
.
44.
Yang
,
F.
,
Zhang
,
H. Q.
, and
Wang
,
X. L.
,
2011
, “
Effects of Soret Diffusion on the Laminar Flame Speed of n-Butane–Air Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
947
953
.
45.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “Evaluated Kinetic Data for Combustion Modeling: Supplement II,”
J. Phys. Chem. Ref. Data
,
34
(
3
), p.
757
.
46.
Goos
,
E.
,
Burcat
,
A.
, and
Ruscic
,
B.
,
2011
, “
Extended Third Millenium Ideal Gas and Condensed Phase Thermochemical Database for Combustion With Updates From Active Thermochemical Tables
,” http://garfield.chem.elte.hu/Burcat/therm.dat
47.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Esser
,
C.
,
Frank
,
P.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1992
, “Evaluated Kinetic Data for Combustion Modelling,”
J. Phys. Chem. Ref. Data
,
21
(
3
), p.
411
.
48.
Colberg
,
M.
, and
Friedrichs
,
G.
,
2005
, “
Room Temperature and Shock Tube Study of the Reaction HCO + O2 Using the Photolysis of Glyoxal as an Efficient HCO Source
,”
J. Phys. Chem. A
,
110
(
1
), pp.
160
170
.
49.
Krasnoperov
,
L. N.
, and
Michael
,
J. V.
,
2004
, “
Shock Tube Studies Using a Novel Multipass Absorption Cell: Rate Constant Results For OH + H2 and OH + C2H6
,”
J. Phys. Chem. A
,
108
(
26
), pp.
5643
5648
.
50.
Slavinskaya
,
N. A.
, and
Haidn
,
O. J.
,
2011
, “
Kinetic Mechanism for Low Pressure Oxygen/Methane Ignition and Combustion
,”
AIAA
Paper No. 2011-94.
You do not currently have access to this content.