Interconnected floaters could use relative rotations around connection joints to drive a power take-off (PTO) system, such that the ocean wave energy can be converted into a useful energy. In this paper, our attention is on the PTO optimization for the interconnected floaters. A fully linear dynamic system, including the linear hydrodynamics of the interconnected floaters and a linear PTO system, is considered. Under assumptions of linear theory, we present a mathematical model for evaluating the maximum wave energy conversion of two interconnected floaters based on the three-dimensional wave radiation–diffraction theory. The model is validated by comparison of the present results with the published data, and there is a good agreement. The model can be employed to calculate the maximum power absorbed by the interconnected floaters under motion constraints due to the restraints of pump stroke or/and collision problem between the floaters. The influence of wave frequency, PTO system, floater rotary inertia radius, and motion constraints on the power capture capability of the two interconnected floaters is also examined. It can be concluded that enlarging the rotary inertia of each floater by using mass nonuniform distribution can be seen as an alternative way of adding PTO inertia. The maximum relative power capture width of the two interconnected floaters with optimized PTO system under constraints is much smaller than that without any motion constraints for long waves.

References

References
1.
Panicker
,
N. N.
,
1976
, “
Power Resource Potential of Ocean Surface Waves
,”
Wave and Salinity Gradient Energy Conversion Workshop
, Newark, DE, May 24–26, pp.
J1
J48
.
2.
Falnes
,
J.
,
2007
, “
A Review of Wave-Energy Extraction
,”
Marine Struct.
,
20
(
4
), pp.
185
201
.
3.
Falnes
,
J.
,
2001
, “
Optimum Control of Oscillation of Wave-Energy Converters
,”
Int. J. Offshore Polar Eng.
,
12
(2), pp.
147
155
.
4.
Sheng
,
W.
, and
Lewis
,
A.
,
2012
, “
Assessment of Wave Energy Extraction From Seas: Numerical Validation
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041701
.
5.
Monds
,
J. R.
,
2013
, “
Multicriteria Decision Analysis for Wave Power Technology in Canada
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021201
.
6.
Sheng
,
W.
,
Alcorn
,
R.
, and
Lewis
,
A.
,
2015
, “
On Improving Wave Energy Conversion, Part I: Optimal and Control Technologies
,”
Renewable Energy
,
75
(
2015
), pp.
922
934
.
7.
Drew
,
B.
,
Plummer
,
A. R.
, and
Sahinkaya
,
M. N.
,
2009
, “
A Review of Wave Energy Converter
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
8
), pp.
887
902
.
8.
Lin
,
Y.
,
Bao
,
J.
,
Liu
,
H.
,
Li
,
W.
,
Tu
,
L.
, and
Zhang
,
D.
,
2015
, “
Review of Hydraulic Transmission Technologies for Wave Power Generation
,”
Renewable Sustainable Energy Rev.
,
50
(
2015
), pp.
194
203
.
9.
Astariz
,
S.
, and
Iglesias
,
G.
,
2015
, “
The Economics of Wave Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
45
(
2015
), pp.
397
408
.
10.
Mei
,
C. C.
,
2012
, “
Hydrodynamic Principles of Wave Power Extraction
,”
Philos. Trans. R. Soc. A
,
370
(
1959
), pp.
208
234
.
11.
Budal
,
K.
,
1977
, “
Theory of Absorption of Wave Power by a System of Interacting Bodies
,”
J. Ship Res.
,
21
, pp.
248
253
.
12.
Falnes
,
J.
,
1980
, “
Radiation Impedance Matrix and Optimum Power Absorption for Interacting Oscillators in Surface Waves
,”
Appl. Ocean Res.
,
2
(
2
), pp.
75
80
.
13.
Newman
,
J. N.
,
1979
, “
Absorption of Wave Energy by Elongated Bodies
,”
Appl. Ocean Res.
,
1
(
4
), pp.
189
196
.
14.
Evans
,
D. V.
,
1981
, “
Maximum Wave-Power Absorption Under Motion Constraints
,”
Appl. Ocean Res.
,
3
(
4
), pp.
200
203
.
15.
Pizer
,
D. J.
,
1993
, “
Maximum Wave-Power Absorption of Point Absorbers Under Motion Constraints
,”
Appl. Ocean Res.
,
15
(
4
), pp.
227
234
.
16.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems: Linear Interaction Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
, Chap. 3.
17.
Mei
,
C. C.
,
Stiassnie
,
M.
, and
Yue
,
D. K. P.
,
2005
,
Theory and Applications of Ocean Surface Waves Part 1: Linear Aspects
,
World Scientific
,
Singapore
, Chap. 8.
18.
Gomes
,
R. P. F.
,
Lopes
,
M. F. P.
,
Henriques
,
J. C. C.
,
Gato
,
L. M. C.
, and
Falcao
,
A. F. O.
,
2015
, “
The Dynamics and Power Extraction of Bottom-Hinged Plate Wave Energy Converters in Regular and Irregular Waves
,”
Ocean Eng.
,
96
(
2015
), pp.
86
99
.
19.
Shi
,
H.
,
Cao
,
F.
,
Liu
,
Z.
, and
Qu
,
N.
,
2016
, “
Theoretical Study on the Power Take-Off Estimation of Heaving Buoy Wave Energy Converter
,”
Renewable Energy
,
86
(
2016
), pp.
441
448
.
20.
Yemm
,
R.
,
Pizer
,
Z.
,
Retzler
,
C.
, and
Henderson
,
R.
,
2012
, “
Pelamis: Experience From Concept to Connection
,”
Philos. Trans. R. Soc. A
,
370
(
1959
), pp.
365
380
.
21.
Kraemer
,
D.
,
2001
, “
The Motions of Hinged–Barge Systems in Regular Seas
,”
Ph.D. thesis
, Johns Hopkins University, Baltimore, MD.
22.
Sun
,
L.
,
Eatock Taylor
,
R.
, and
Choo
,
Y. S.
,
2011
, “
Responses of Interconnected Floating Bodies
,”
The IES J. Part A: Civil and Struct. Eng.
,
4
(
3
), pp.
143
156
.
23.
Zheng
,
S.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Sheng
,
W.
,
2015
, “
Numerical Study on the Dynamics of a Two-Raft Wave Energy Conversion Device
,”
J. Fluids Struct.
,
58
(
2015
), pp.
271
290
.
24.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
25.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
The MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.