In recent years, more efforts have been made to improve new and more efficient nonmembrane-based methods for water desalination. Capacitive deionization (CDI), a novel technique for water desalination using an electric field to adsorb ions from a solution to a high-porous media, has the capability to recover a fraction of the energy consumed for the desalination during the regeneration process, which happens to be its most prominent characteristic among other desalination methods. This paper introduces a new desalination method that aims at improving the performance of traditional CDI systems. The proposed process consists of an array of CDI cells connected in series with buffer containers in between them. Each buffer serves two purposes: (1) averaging the outlet solution from the preceding cell and (2) securing a continuous water supply to the following cell. Initial evaluation of the proposed CDI system architecture was made by comparing a two-cell-one-buffer assembly with a two cascaded cells array. Concentration of the intermediate solution buffer was the minimum averaged concentration attained at the outlet of the first CDI cell, under a steady-state condition. The obtained results show that the proposed CDI system with intermediate solution had better performance in terms of desalination percentage. This publication opens new opportunities to improve the performance of CDI systems and implement this technology on industrial applications.

References

References
1.
Oren
,
Y.
,
2008
, “
Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (A Review)
,”
Desalination
,
228
(
1–3
), pp.
10
29
.
2.
McGlade
,
J.
,
Werner
,
B.
,
Young
,
M.
,
Matlock
,
M.
,
Jefferies
,
D.
,
Sonnemann
,
G.
,
Aldaya
,
M.
,
Pfister
,
S.
,
Berger
,
M.
,
Farell
,
C.
,
Hyde
,
K.
,
Wackernagel
,
M.
,
Hoekstra
,
A.
,
Mathews
,
R.
,
Liu
,
J.
,
Ercin
,
E.
,
Weber
,
J. L.
,
Alfieri
,
A.
,
Martinez-Lagunes
,
R.
,
Edens
,
B.
,
Schulte
,
P.
,
Wirén-Lehr
,
S. V.
, and
Gee
,
D.
,
2012
,
Measuring Water Use in a Green Economy
,
UNEP
, Paris.
3.
Anderson
,
M. A.
,
Cudero
,
A. L.
, and
Palma
,
J.
,
2010
, “
Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete?
Electrochim. Acta
,
55
(
12
), pp.
3845
3856
.
4.
Klausner
,
J. F.
,
Li
,
Y.
,
Darwish
,
M.
, and
Mei
,
R.
,
2004
, “
Innovative Diffusion Driven Desalination Process
,”
ASME J. Energy Res. Technol.
,
126
(
3
), pp.
219
225
.
5.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2014
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Res. Technol.
,
137
(
1
), p.
011201
.
6.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Res. Technol.
,
134
(
4
), p.
041201
.
7.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Res. Technol.
,
136
(
3
), p.
031202
.
8.
Demirer
,
O. N.
,
Naylor
,
R. M.
,
Perez
,
C. A. R.
,
Wilkes
,
E.
, and
Hidrovo
,
C.
,
2013
, “
Energetic Performance Optimization of a Capacitive Deionization System Operating With Transient Cycles and Brackish Water
,”
Desalination
,
314
, pp.
130
138
.
9.
Li
,
H.
,
Gao
,
Y.
,
Pan
,
L.
,
Zhang
,
Y.
,
Chen
,
Y.
, and
Sun
,
Z.
,
2008
, “
Electrosorptive Desalination by Carbon Nanotubes and Nanofibres Electrodes and Ion-Exchange Membranes
,”
Water Res.
,
42
(
20
), pp.
4923
4928
.
10.
Mossad
,
M.
, and
Zou
,
L.
,
2012
, “
A Study of the Capacitive Deionisation Performance Under Various Operational Conditions
,”
J. Hazard. Mater.
,
213–214
, pp.
491
497
.
11.
Ryoo
,
M.-W.
, and
Seo
,
G.
,
2003
, “
Improvement in Capacitive Deionization Function of Activated Carbon Cloth by Titania Modification
,”
Water Res.
,
37
(
7
), pp.
1527
1534
.
12.
Porada
,
S.
,
Weinstein
,
L.
,
Dash
,
R.
,
van der Wal
,
A.
,
Bryjak
,
M.
,
Gogotsi
,
Y.
, and
Biesheuvel
,
P. M.
,
2012
, “
Water Desalination Using Capacitive Deionization With Microporous Carbon Electrodes
,”
ACS Appl. Mater. Interfaces
,
4
(
3
), pp.
1194
1199
.
13.
Xu
,
P.
,
Drewes
,
J. E.
,
Heil
,
D.
, and
Wang
,
G.
,
2008
, “
Treatment of Brackish Produced Water Using Carbon Aerogel-Based Capacitive Deionization Technology
,”
Water Res.
,
42
(
10–11
), pp.
2605
2617
.
14.
Dermentzis
,
K.
, and
Ouzounis
,
K.
,
2008
, “
Continuous Capacitive Deionization–Electrodialysis Reversal Through Electrostatic Shielding for Desalination and Deionization of Water
,”
Electrochim. Acta
,
53
(
24
), pp.
7123
7130
.
15.
Welgemoed
,
T. J.
, and
Schutte
,
C. F.
,
2005
, “
Capacitive Deionization Technology™: An Alternative Desalination Solution
,”
Desalination
,
183
(
1–3
), pp.
327
340
.
16.
Farmer
,
J. C.
,
Bahowick
,
S. M.
,
Harrar
,
J. E.
,
Fix
,
D. V.
,
Martinelli
,
R. E.
,
Vu
,
A. K.
, and
Carroll
,
K. L.
,
1997
, “
Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water
,”
Energy Fuels
,
11
(
2
), pp.
337
347
.
17.
Johnson
,
A. M.
, and
Newman
,
J.
,
1971
, “
Desalting by Means of Porous Carbon Electrodes
,”
J. Electrochem. Soc.
,
118
(
3
), pp.
510
517
.
18.
Perez
,
C. A. R.
,
Demirer
,
O. N.
,
Clifton
,
R. L.
,
Naylor
,
R. M.
, and
Hidrovo
,
C. H.
,
2013
, “
Macro Analysis of the Electro-Adsorption Process in Low Concentration NaCl Solutions for Water Desalination Applications
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
E13
E21
.
19.
Biesheuvel
,
P. M.
,
Limpt
,
B. V.
, and
Wal
,
A. V. D.
,
2009
, “
Dynamic Adsorption/Desorption Process Model for Capacitive Deionization
,”
J. Phys. Chem. C
,
113
(
14
), pp.
5636
5640
.
20.
Zhao
,
R.
,
Biesheuvel
,
P. M.
,
Miedema
,
H.
,
Bruning
,
H.
, and
van der Wal
,
A.
,
2009
, “
Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization
,”
J. Phys. Chem. Lett.
,
1
(
1
), pp.
205
210
.
21.
Bazant
,
M. Z.
,
Thornton
,
K.
, and
Ajdari
,
A.
,
2004
, “
Diffuse-Charge Dynamics in Electrochemical Systems
,”
Phys. Rev. E
,
70
(
2
), p.
021506
.
22.
Suss
,
M. E.
,
Biesheuvel
,
P. M.
,
Baumann
,
T. F.
,
Stadermann
,
M.
, and
Santiago
,
J. G.
,
2014
, “
In Situ Spatially and Temporally Resolved Measurements of Salt Concentration Between Charging Porous Electrodes for Desalination by Capacitive Deionization
,”
Environ. Sci. Technol.
,
48
(
3
), pp.
2008
2015
.
23.
Porada
,
S.
,
Borchardt
,
L.
,
Oschatz
,
M.
,
Bryjak
,
M.
,
Atchison
,
J. S.
,
Keesman
,
K. J.
,
Kaskel
,
S.
,
Biesheuvel
,
P. M.
, and
Presser
,
V.
,
2013
, “
Direct Prediction of the Desalination Performance of Porous Carbon Electrodes for Capacitive Deionization
,”
Energy Environ. Sci.
,
6
(
12
), pp.
3700
3712
.
24.
Biesheuvel
,
P. M.
,
Fu
,
Y.
, and
Bazant
,
M. Z.
,
2012
, “
Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes
,”
Russ. J. Electrochem.
,
48
(
6
), pp.
580
592
.
25.
Biesheuvel
,
P. M.
,
Fu
,
Y.
, and
Bazant
,
M. Z.
,
2011
, “
Diffuse Charge and Faradaic Reactions in Porous Electrodes
,”
Phys. Rev. E
,
83
(
6
), p.
061507
.
26.
Roussak
,
O. V.
,
2012
,
Applied Chemistry a Textbook for Engineers and Technologists
,
Springer
,
Heidelberg
, Germany.
27.
Matsushima
,
H.
,
Nishida
,
T.
,
Konishi
,
Y.
,
Fukunaka
,
Y.
,
Ito
,
Y.
, and
Kuribayashi
,
K.
,
2003
, “
Water Electrolysis Under Microgravity: Part 1. Experimental Technique
,”
Electrochim. Acta
,
48
(
28
), pp.
4119
4125
.
28.
Roy
,
A.
,
Watson
,
S.
, and
Infield
,
D.
,
2006
, “
Comparison of Electrical Energy Efficiency of Atmospheric and High-Pressure Electrolysers
,”
Int. J. Hydrogen Energy
,
31
(
14
), pp.
1964
1979
.
29.
Turner
,
J.
,
Sverdrup
,
G.
,
Mann
,
M. K.
,
Maness
,
P.-C.
,
Kroposki
,
B.
,
Ghirardi
,
M.
,
Evans
,
R. J.
, and
Blake
,
D.
,
2008
, “
Renewable Hydrogen Production
,”
Int. J. Energy Res.
,
32
(
5
), pp.
379
407
.
You do not currently have access to this content.