Considering the large variations of working fluid's properties in near-critical region, this paper presents a thermodynamic analysis of the performance of organic Rankine cycle in near-critical condition (NORC) subjected to the influence of evaporation temperature. Three typical organic fluids are selected as working fluids. They are dry R236fa, isentropic R142b, and wet R152a, which are suited for heat source temperature from 395 to 445 K. An iteration calculation method is proposed to calculate the performance parameters of organic Rankine cycle (ORC). The variations of superheat degree, specific absorbed heat, expander inlet pressure, thermal efficiency, and specific net power of these fluids with evaporation temperature are analyzed. It is found that the working fluids in NORC should be superheated because of the large slope variation of the saturated vapor curve in near-critical region. However, the use of dry R236fa or isentropic R142b in NORC can be accepted because of the small superheat degree. The results also indicate that a small variation of evaporation temperature requires a large variation of expander inlet pressure, which may make the system more stable. In addition, due to the large decrease of latent heat in near-critical region, the variation of specific absorbed heat with evaporation temperature is small for NORC. Both specific net power and thermal efficiency for the fluids in NORC increase slightly with the rise of the evaporation temperature, especially for R236fa and R142b. Among the three types of fluids, dry R236fa and isentropic R142b are better suited for NORC. The results are useful for the design and optimization of ORC system in near-critical condition.

References

References
1.
Tchanche
,
B. F.
,
Lambrinos
,
G.
,
Frangoudakis
,
A.
, and
Papadakis
,
G.
,
2011
, “
Low-Grade Heat Conversion Into Power Using Organic Rankine Cycles—A Review of Various Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3963
3979
.
2.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
A Technical, Economical and Market Review of Organic Rankine Cycles for the Conversion of Low Grade Heat for Power Generation
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4175
4189
.
3.
Walraven
,
D.
,
Laenen
,
B.
, and
D'haeseleer
,
W.
,
2013
, “
Comparison of Thermodynamic Cycles for Power Production From Low-Temperature Geothermal Heat Sources
,”
Energy Convers. Manage.
,
66
, pp.
220
233
.
4.
Bahaa
,
S.
,
Gerald
,
K.
,
Martin
,
W.
, and
Johann
,
F.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
(
7
), pp.
1210
1221
.
5.
Chys
,
M.
,
Broek
,
M. V. D.
,
Vanslambrouck
,
B.
, and
Paepe
,
M. D.
,
2012
, “
Potential of Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles
,”
Energy
,
44
(
1
), pp.
623
632
.
6.
Bao
,
J. J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.
7.
Mathias
,
J. A.
,
Johnston
,
J. R.
,
Cao
,
J.
,
Priedeman
,
D. K.
, and
Christensen
,
R. N.
,
2009
, “
Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modeling of, an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012201
.
8.
Gu
,
W.
,
Weng
,
Y. W.
,
Wang
,
Y.
, and
Zheng
,
B.
,
2009
, “
Theoretical and Experimental Investigation of an Organic Rankine Cycle for a Waste Heat Recovery System
,”
Inst. Mech. Eng. A-J
,
223
(
5
), pp.
523
533
.
9.
Zhou
,
N. J.
,
Wang
,
X. Y.
,
Chen
,
Z.
, and
Wang
,
Z. Q.
,
2013
, “
Experimental Study on Organic Rankine Cycle for Waste Heat Recovery From Low-Temperature Flue Gas
,”
Energy
,
55
(
15
), pp.
216
225
.
10.
Vetter
,
C.
,
Wiemer
,
H. J.
, and
Kuhn
,
D.
,
2013
, “
Comparison of Sub- and Supercritical Organic Rankine Cycles for Power Generation From Low-Temperature/Low-Enthalpy Geothermal Wells, Considering Specific Net Power Output and Efficiency
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
871
879
.
11.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
J. Energy Resour.
,
135
(
4
), pp.
1
9
.
12.
Marion
,
M.
,
Voicu
,
I.
, and
Tiffonnet
,
A. L.
,
2012
, “
Study and Optimization of a Solar Subcritical Organic Rankine Cycle
,”
Renewable Energy
,
48
, pp.
100
109
.
13.
Wang
,
D. X.
,
Ling
,
X.
,
Peng
,
H.
,
Liu
,
L.
, and
Tao
,
L. L.
,
2013
, “
Efficiency and Optimal Performance Evaluation of Organic Rankine Cycle for Low Grade Waste Heat Power Generation
,”
Energy
,
50
(
1
), pp.
343
352
.
14.
Pan
,
L. H.
,
Wang
,
H. X.
, and
Shi
,
W. X.
,
2012
, “
Performance Analysis in Near-Critical Conditions of Organic Rankine Cycle
,”
Energy
,
37
(
1
), pp.
281
286
.
15.
Nowak
,
W.
,
Borsukiewicz-Gozdur
,
A.
, and
Wisniewsk
,
S.
,
2012
, “
Influence of Working Fluid Evaporation Temperature in the Near-Critical Point Region on the Effectiveness of ORC Power Plant Operation
,”
Arch. Thermodyn.
,
33
(
3
), pp.
73
83
.
16.
Vaja
,
I.
, and
Gambarotta
,
A.
,
2010
, “
Internal Combustion Engine (ICE) Bottoming With Organic Rankine Cycles (ORCs)
,”
Energy
,
35
(
2
), pp.
1084
1093
.
17.
Trela
,
M.
,
Kwidzinski
,
K.
, and
Butrymowicz
,
D.
,
2011
, “
A Definition of Near-Critical Region Based on Heat Capacity Variation in Transcritical Heat Exchangers
,”
Arch. Thermodyn.
,
32
(
2
), pp.
55
68
.
18.
Drescher
,
U.
, and
Brüggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
.
19.
Delgadeo-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Preliminary Assessment of Solar Organic Rankine Cycles for Driving a Desalination System
,”
Desalination
,
216
(
1–3
), pp.
252
75
.
20.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.
21.
NIST
,
2010
,
NIST Standard Reference Database23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,
National Institute of Standards and Technology
,
Gaithersburg, CO
.
22.
Yunus
,
A. C.
, and
Michael
,
A. B.
,
2006
,
Thermodynamics: An Engineering Approach
,
5th ed.
,
McGraw-Hill College
,
Boston, MA
.
23.
Li
,
M. Q.
,
Wang
,
J. F.
,
He
,
W. F.
,
Wang
,
B.
,
Ma
,
S. L.
, and
Dai
,
Y. P.
,
2013
, “
Experimental Evaluation of the Regenerative and Basic Organic Rankine Cycle for Low-Grade Heat Source Utilization
,”
J. Energy Eng.
,
139
(
3
), pp.
190
197
.
24.
Li
,
Y. R.
,
Wang
,
J. N.
, and
Du
,
M. T.
,
2012
, “
Influence of Coupled Pinch Point Temperature Difference and Evaporation Temperature on Performance of Organic Rankine Cycle
,”
Energy
,
42
(
1
), pp.
503
509
.
25.
Mago
,
P. J.
,
Chamra
,
L. M.
,
Srinivasan
,
K.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Regenerative Organic Rankine Cycles Using Dry Fluids
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
998
1007
.
You do not currently have access to this content.