An experimental study is presented of the ability of fine meshes to remove fog drops from an air flow. Specifically, the collection efficiency (CE) was measured for fog drops passing through mesh fabrics. Meshes composed of cotton, nylon, and Teflon were investigated, and the effect of the material as well as mesh porosity was determined. Collection efficiencies ranging from 5% to 50% were obtained. The ultimate goal of this work is to employ such meshes in a parachute configuration above power plant cooling towers, so that condensed fog may be collected and returned to the cooling loop. It is shown that the drop diameters and velocities investigated here are similar to those observed above cooling towers.

References

References
1.
Kenny
,
J. F.
,
Barber
,
N. L.
,
Hutson
,
S. S.
,
Linsey
,
K. S.
,
Lovelace
,
J. K.
, and
Maupin
,
M. A.
,
2009
, “
Estimated Use of Water in the United States in 2005
,”
USGS
, Reston, VA, Technical Report No. 1344.
2.
Hensley
,
J. C.
, ed.,
2009
,
Cooling Tower Fundamentals
,
2nd ed.
,
SPX Cooling Technologies
,
Overland Park, KS
.
3.
Solley
,
W. B.
,
Pierce
,
R. R.
, and
Perlman
,
H. A.
,
1998
, “
Estimated Use of Water in the United States in 1995
,”
USGS
, Reston, VA, Technical Report No. 1200.
4.
Foster
,
P. M.
,
Williams
,
M. I.
, and
Winter
,
R. J.
,
1974
, “
Droplet Behavior and Collection by Counterflow Cooling Tower Eliminators
,”
Atmos. Environ.
,
8
(
4
), pp.
349
360
.
5.
Chan
,
J.
, and
Golay
,
M. W.
,
1977
, “
Comparative Performance Evaluation of Current Design Evaporative Cooling Tower Drift Eliminators
,”
Atmos. Environ.
,
11
(
8
), pp.
775
781
.
6.
Becker
,
B. R.
, and
Burdick
,
L. F.
,
1992
, “
Effect of Drift Eliminator Design on Cooling Tower Performance
,”
ASME J. Eng. Gas Turbines Power
,
114
(
4
), pp.
632
642
.
7.
Cho
,
R.
,
2011
, “
The Fog Collectors: Harvesting Water From Thin Air
,”
Water Matters
,
The Earth Institute
,
Columbia University, New York
.
8.
Fessehaye
,
M.
,
Abdul-Waham
,
S. A.
,
Savage
,
M. J.
,
Kohler
,
T.
,
Gherezghiher
,
T.
, and
Hurni
,
H.
,
2014
, “
Fog-Water Collection for Community Use
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
52
62
.
9.
Schemenauer
,
R. S.
, and
Joe
,
P.
,
1989
, “
The Collection Efficiency of a Massive Fog Collector
,”
Atmos. Res.
,
24
(
1–4
), pp.
53
69
.
10.
Schemenauer
,
R. S.
, and
Cereceda
,
P.
,
1994
, “
Fog Collection's Role in Water Planning for Developing Countries
,”
Nat. Resour. Forum
,
18
(
2
), pp.
91
100
.
11.
Ran
,
W.
,
Saylor
,
J. R.
, and
Holt
,
R. G.
,
2014
, “
Improved Particle Scavenging by a Combination of Ultrasonics and Water Sprays
,”
J. Aerosol Sci.
,
67
, pp.
104
118
.
12.
Elonka
,
S.
,
1963
, “
Cooling Towers: A Special Report
,”
Power
.
13.
Rothman
,
T.
, and
Ledbetter
,
J. O.
,
1975
, “
Droplet Size of Cooling Tower Fog
,”
Environ. Lett.
,
10
(
3
), pp.
191
203
.
14.
Hanna
,
S. R.
,
1975
, “
Meteorological Effects of the Mechanical-Draft Cooling Towers of the Oak Ridge Gaseous Diffusion Plant
,”
Environmental Research Laboratories 1974 Annual Report
,
R. P.
Hosker
and
R. A.
Green
, eds., National Oceanic and Atmospheric Administration, Oak Ridge, TN, pp.
55
70
.
15.
Hall
,
W. A.
,
1962
, “
Elimination of Cooling Tower Fog From a Highway
,”
J. Air Pollut. Control Assoc.
,
12
(
8
), pp.
379
383
.
16.
Chen
,
N.
, and
Hanna
,
S.
,
1967
, “
Drift Modeling and Monitoring Comparisons
,”
Atmos. Environ.
,
12
(
8
), pp.
1725
1734
.
17.
Roffman
,
A.
, and
Van Vleck
,
L.
,
1974
, “
The State-of-the-Art of Measuring and Predicting Cooling Tower Drift and Its Deposition
,”
J. Air Pollut. Control Assoc.
,
24
(
9
), pp.
855
859
.
18.
Ruiz
,
J.
,
Kaiser
,
A. S.
,
Ballesta
,
M.
,
Gil
,
A.
, and
Lucas
,
M.
,
2013
, “
Experimental Measurement of Cooling Tower Emissions Using Image Processing of Sensitive Papers
,”
Atmos. Environ.
,
69
, pp.
170
181
.
19.
1977
, “
Chalk Point Surface Weather and Ambient Atmospheric Profile Data: Second Intensive Test Period, June 14–24, 1976
,” Chalk Point Cooling Tower Project Data Report, Applied Physics Laboratory and Maryland Power Plant Siting Program, Johns Hopkins University, Baltimore, MD.
20.
Lucas
,
M.
,
Martinez
,
P. J.
,
Ruiz
,
J.
,
Kaiser
,
A. S.
, and
Viedma
,
A.
,
2010
, “
On the Influence of Psychrometric Ambient Conditions on Cooling Tower Drift Deposition
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
594
604
.
You do not currently have access to this content.