The rate-controlled constrained-equilibrium method (RCCE) has been further developed to model the combustion process of ethanol air mixtures. The RCCE is a reduction technique based on local maximization of entropy or minimization of a relevant free energy at any time during the nonequilibrium evolution of the system subject to a set of kinetic constraints. An important part of RCCE calculation is determination of a set of constraints that can guide the nonequilibrium mixture to the final stable equilibrium state. In this study, 16 constraints have been developed to model the nonequilibrium ethanol combustion process. The method requires solution of 16 differential equations for the corresponding constraint potentials. Ignition delay calculations of ethanol oxidizer mixtures using RCCE have been compared to those of detailed chemical kinetics using 37 species and 235 reactions. Agreement between the two models is very good. In addition, ignition delay of C2H5OH/O2/Ar mixtures using RCCE has been compared with the experimental measurements in the shock tube and excellent agreement has been reached validating the RCCE calculation.

References

References
1.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2014
, “
Constrained-Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032205
.
2.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
3.
Keck
,
J. C.
,
1990
, “
Rate-Controled Constrained-Equilbrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
4.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
5.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1989
, “
Rate-Controlled Constrained Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
6.
Bishnu
,
P.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Model.
,
1
(
3
), pp.
295
312
.
7.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Rate-Controlled Constrained-Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
(
1
), pp.
81
94
.
8.
Ugarte
,
S.
,
Gao
,
Y.
, and
Metghalchi
,
M.
,
2005
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
9.
Janbozorgi
,
M.
,
Gao
,
Y.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2006
, “
Rate-Controlled Constrained-Equilibrium Calculations of Ethanol-Oxygen Mixture
,”
ASME
Paper No. IMECE2006-15667.
10.
Nicolas
,
G.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Modeling of C1–C2/O2/Diluent Mixtures
,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA.
11.
Bishnu
,
P. S.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Non-Equilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.
12.
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
13.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
14.
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
AIAA J. Propul. Power
,
28
(
4
), pp.
677
684
.
15.
Nicolas
,
G.
, and
Metghalchi
,
M.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Time at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
16.
Janbozorgi
,
M.
,
Sheikhi
,
M. R.
, and
Metghalchi
,
M.
,
2013
, “
Principle of Detailed Balance and the Second Law of Thermodynamics in Chemical Kinetics
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041901
.
17.
Li
,
J.
,
2004
, “
Experimental and Numerical Studies of Ethanol Chemical Kinetics
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, p. MAE 3122-T.
18.
Smith
,
S. R.
,
Gordon Smith
,
S. R.
, and
Gordon
,
A. S.
,
1956
, “
Studies of Diffusion Flames. II. Diffusion Flames of Some Simple Alcohols
,”
J. Phys. Chem.
,
60
(
8
), pp.
1059
1062
.
19.
Lieb
,
D. F.
, and
Roblee
,
L. H. S.
, Jr.
,
1970
, “
Radioisotopic Tracer Study of Carbon Formation in Ethanol/Air Diffusion Flames
,”
Combust. Flame
,
14
(
3
), pp.
285
296
.
20.
Bansal
,
K. M.
, and
Freeman
,
G. R.
,
1968
, “
Free-Radical Chain Reactions in Radiation-Sensitized Pyrolysis of Ethanol Vapor
,”
J. Am. Chem. Soc.
,
90
(
26
), pp.
7190
7196
.
21.
Brown
,
J.
, and
Tipper
,
C. F. H.
,
1969
, “
Cool Flame Combustion of Ethanol
,”
Proc. R. Soc. London, Ser. A
,
312
(
1510
), pp.
399
407
.
22.
Borisov
,
A. A.
,
Zamanskii
,
V. M.
,
Konnov
,
A. A.
,
Lisyanskii
,
V. V.
,
Rusakov
,
S. A.
, and
Skachkov
,
G. I.
,
1992
, “
High-Temperature Ethanol Ignition
,”
Soviet J. Chem. Phys.
,
9
, pp.
2527
2537
.
23.
Natarajan
,
K.
, and
Bhaskaran
,
K. A.
,
1981
, “
An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol. Shock Tube And Waves
,”
13th International Symposium on Shock Waves
, Niagara Falls, NY, July 6–9, pp.
834
842
.
24.
Curran
,
H. J.
,
Dunphy
,
M. P.
,
Simmie
,
J. M.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
1992
, “
Shock Tube Ignition of Ethanol, Isobutene and MTBE: Experiments and Modeling
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
769
776
.
25.
Dunphy
,
M.
, and
Simmie
,
J.
,
1991
, “
High-Temperature Oxidation of Ethanol. Part 1—Ignition Delays in Shock Waves
,”
J. Chem. Soc. Faraday Trans.
,
87
(
11
), pp.
1691
1696
.
26.
Norton
,
T. S.
, and
Dryer
,
F. L.
,
1992
, “
An Experimental and Modeling Study of Ethanol Oxidation Kinetics in an Atmospheric Pressure Flow Reactor
,”
Int. J. Chem. Kinetics
,
24
(
4
), pp.
319
344
.
27.
Egolfopoulos
,
F. N.
,
Du
,
D. X.
, and
Law
,
C. K.
,
1992
, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
833
841
.
28.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
, and
Dryer
,
F. L.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, CH3OH Combustion
,”
Int. J. Chem. Kinetics
,
39
(
3
), pp.
109
136
.
29.
Li
,
J.
,
Kazakov
,
A.
,
Chaos
,
M.
, and
Dryer
,
F. L.
,
2007
, “
Chemical Kinetics of Ethanol Oxidation
,”
5th U.S. Combustion Meeting
, San Diego, CA, Mar. 25–28, Paper No. C-26.
30.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinetics
,
36
(
10
), pp.
566
575
.
31.
Held
,
T. J.
,
1993
, “
The Oxidation of Methanol, Isobutene and Methyl Tertiary-Butyl Ether
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
32.
Wang
,
H.
,
Laskin
,
A.
,
Djurisic
,
Z. M.
,
Law
,
C. K.
,
Davis
,
S. G.
, and
Zhu
,
D. L.
,
1999
, “
A Comprehensive Mechanism of C2Hx and C3Hx Fuel Combustion
,” Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Raleigh, NC, Oct. 10–13, pp.
129
132
.
33.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
Overview of GRI-Mech
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
34.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinetics
,
31
(
3
), pp.
183
220
.
35.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1987
, “
The Chemkin Thermodynamic Data Base
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND87-8215.
36.
Burcat
,
A.
,
2007
, “
Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion
,” online database, http://burcat.technion.ac.il/dir/
37.
Ruscic
,
B.
,
Pinzon
,
R. E.
,
Morton
,
M. L.
,
Srinivasan
,
N. K.
,
Su
,
M.-C.
,
Sutherland
,
J. W.
, and
Michael
,
J. V.
,
2006
, “
Active Thermochemical Tables: Accurate Enthalpy of Formation of Hydroperoxyl Radical, HO2
,”
J. Phys. Chem., A
,
110
(
21
), pp.
6592
6601
.
38.
Li
,
J.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2001
, “
Ethanol Pyrolysis Experiments in a Variable Pressure Flow Reactor
,”
Int. J. Chem. Kinetics
,
33
(
12
), pp.
859
867
.
39.
Li
,
J.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
Experimental and Numerical Studies of Ethanol Decomposition Reactions
,”
J. Phys. Chem. A
,
108
(
38
), pp.
7671
7680
.
40.
Haas
,
F. M.
,
Chaos
,
M.
, and
Dryer
,
F. L.
,
2009
, “
Low and Intermediate Temperature Oxidation of Ethanol and Ethanol–PRF Blends: An Experimental and Modeling Study
,”
Combust. Flame
,
156
(
12
), pp.
2346
2350
.
41.
Dunphy
,
M. P.
,
Patterson
,
P. M.
, and
Simmie
,
J. M.
,
1991
, “
High-Temperature Oxidation of Ethanol. Part II Kinetic Modeling
,”
J. Chem. Soc. Faraday Trans.
,
87
(
16
), pp.
2549
2559
.
42.
Reynolds
,
W. C.
,
1986
, STANJAN Program, Stanford University, Stanford, CA, ME270, HO#7.
43.
Wang
,
B. L.
,
Olivier
,
H.
, and
Gronig
,
H.
,
2003
, “
Ignition of Shock-Heated H2-Air-Steam Mixtures
,”
Combust. Flame
,
133
, pp.
93
106
.
44.
Yu
,
C. L.
,
Frenklach
,
M.
,
Masten
,
D. A.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
,
1994
, “
Reexamination of Shock-Tube Measurements of the Rate Coefficient of H + O2 → OH + O
,”
J. Phys. Chem.
,
98
(
17
), pp.
4770
4771
.
You do not currently have access to this content.