A numerical investigation is presented assessing the effects of hydrogen compositions and nonflammable diluent mixtures on the combustion and NO emission characteristics of syngas nonpremixed flames for a bluff-body burner. An assessment of turbulent nonpremixed modeling techniques is presented and is compared with the experiments of Correa and Gulati (1992, “Measurements and Modeling of a Bluff Body Stabilized Flame,” Combust. Flame, 89(2), pp. 195–213). The realizable k–ε and the Reynolds stress (RSM) turbulence models were found to perform the best. As a result, increased hydrogen content caused the radial velocity and strain rate to decrease, which was important for mixing whereby NO production decreased. Also, the effectiveness of nonflammable diluent mixtures of N2, CO2, and H2O was characterized in terms of the ability to reduce NO emission in syngas nonpremixed flames. Results indicated that CO2 was the most effective diluent to reduce NO emission and H2O was more effective than N2. CO2 produced low levels of OH radical, which made CO2 the most effective diluent. Although H2O increased OH radicals, it was still effective to reduce thermal NO because of its high specific heat. It will be numerically shown that hydrogen concentration in the H2/CO/N2 flame does not significantly affect temperature but dramatically decreases NO emission, which is important for industrial applications that can use hydrogen in syngas flames.

References

1.
Liu
,
K.
,
Pope
,
S. B.
, and
Caughey
,
D. A.
,
2005
, “
Calculations of Bluff-Body Stabilized Flames Using a Joint Probability Density Function Model With Detailed Chemistry
,”
Combust. Flame
,
141
(
1–2
), pp.
89
117
.
2.
Huang
,
R. F.
, and
Lin
,
C. L.
,
2000
, “
Velocity Fields of Nonpremixed Bluff-Body Stabilized Flames
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
88
93
.
3.
Maele
,
K. V.
,
Merci
,
B.
, and
Dick
,
E.
,
2003
, “
Comparative Study of k–ε Turbulence Models in Inert and Reacting Swirling Flows
,”
AIAA
Paper No. 2003-3744.
4.
Ziani
,
L.
,
Chaker
,
A.
,
Chetehouna
,
K.
,
Malek
,
A.
, and
Mahmah
,
B.
,
2013
, “
Numerical Simulations of Non-Premixed Turbulent Combustion of CH4–H2 Mixtures Using the PDF Approach
,”
Int. J. Hydrogen Energy
,
88
(
20
), pp.
8597
8603
.
5.
International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, 1996-2014, “TNF Workshop,” Sandia National Laboratories, Albuquerque, NM, http://www.sandia.gov/TNF/abstract.html
6.
Dally
,
B. B.
,
Feltcher
,
D. F.
, and
Masri
,
A. R.
,
1998
, “
Flow and Mixing Fields of Turbulent Bluff-Body Jets and Flames
,”
Combust. Theory Modell.
,
2
(
2
), pp.
193
219
.
7.
Yilmaz
,
D.
,
Onbasioglu
,
S. U.
, and
Gökalp
,
I.
,
2005
, “
Computational Modeling of Hydrogen Enriched Non Premixed Turbulent Methane Air Flames
,”
European Combustion Meeting
(
ECM
), Louvain-la-Neuve, Belgium, April 3–6.
8.
Frassoldati
,
A.
,
Sharma
,
P.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2010
, “
Kinetic and Fluid Dynamics Modeling of Methane/Hydrogen Jet Flames in Diluted Coflow
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
376
383
.
9.
Park
,
J.
,
Lee
,
D. H.
,
Yoon
,
S. H.
,
Vu
,
T. M.
,
Yun
,
J. H.
, and
Keel
,
S. I.
,
2009
, “
Effects of Lewis Number and Preferential Diffusion on Flame Characteristics in 80% H2/20% CO Syngas Counterflow Diffusion Flames Diluted With He and Ar
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1578
1584
.
10.
Moore
,
M. J.
,
1997
, “
NOx Emission Control in Gas Turbines for Combined Cycle Gas Turbine Plant
,”
Proc. Inst. Mech. Eng.
,
211
(
1
), pp.
43
52
.
11.
Park
,
J.
,
Kim
,
S. C.
,
Keel
,
S. I.
,
Noh
,
D. S.
,
Oh
,
C. B.
, and
Chung
,
D.
,
2004
, “
Effect of Steam Addition on Flame Structure and NO Formation in H2–O2–N2 Diffusion Flame
,”
Int. J. Energy Res.
,
28
(
12
), pp.
1075
1088
.
12.
Giles
,
D. E.
,
Som
,
S.
, and
Aggarwal
,
S. K.
,
2006
, “
NOx Emission Characteristics of Counterflow Syngas Diffusion Flames With Airstream Dilution
,”
Fuel
,
85
(
12–13
), pp.
1729
1742
.
13.
Choudhuri
,
A. R.
, and
Gollahali
,
S. R.
,
2003
, “
Characteristics of Hydrogen–Hydrocarbon Composite Fuel Turbulent Jet Flames
,”
Int. J. Hydrogen Energy
,
28
(
4
), pp.
445
454
.
14.
Naha
,
S.
, and
Aggarwal
,
S. K.
,
2004
, “
Fuel Effects on NOx Emissions in Partially Premixed Flames
,”
Combust. Flame
,
139
(
1–2
), pp.
90
105
.
15.
Hwang
,
C. H.
,
Lee
,
S.
, and
Lee
,
C. E.
,
2008
, “
The Effect of Turbulence Intensity of Ambient Air Flow on NOx Emissions in H2/Air Nonpremixed Jet Flames
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
832
841
.
16.
Sanusi
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M. A.
,
2014
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.
17.
Rørtveit
,
G. J.
,
Hustad
,
J. E.
,
Li
,
S. C.
, and
Williams
,
F. A.
,
2002
, “
Effects of Diluents on NOx Formation in Hydrogen Counterflow Flames
,”
Combust. Flame
,
130
(
1
), pp.
48
61
.
18.
Zhang
,
Y.
,
Yang
,
T.
,
Liu
,
X.
,
Tian
,
L.
,
Fu
,
Z.
, and
Zhang
,
K.
,
2012
, “
Reduction of Emissions From a Syngas Flame Using Micromixing and Dilution With CO2
,”
Energy Fuels
,
26
(
11
), pp.
6595
6601
.
19.
Kim
,
S. G.
,
Park
,
J.
, and
Keel
,
S. I.
,
2002
, “
Thermal and Chemical Contributions of Added H2O and CO2 to Major Flame Structures and NO Emission Characteristics in H2/N2 Laminar Diffusion Flame
,”
Int. J. Energy Res.
,
26
(
12
), pp.
1073
1086
.
20.
Imteyaz
,
B.
, and
Habib
,
M. A.
,
2015
, “
Study of Combustion Characteristics of Ethanol at Different Dilution With the Carrier Gas
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032205
.
21.
Azatyan
,
V. V.
,
Shebeko
,
Y. N.
, and
Shebeko
,
A. Y.
,
2010
, “
A Numerical Modelling of an Influence of CH4, N2, CO2 and Steam on a Laminar Burning Velocity of Hydrogen in Air
,”
J. Loss Prev. Process Ind.
,
23
(
2
), pp.
331
336
.
22.
Hasegawa
,
T.
,
Sudoh
,
J.
, and
Mochida
,
S.
,
1997
, “
High Temperature Air Combustion With Regenerative Burner System
,”
Combust. Sci. Technol.
,
4
, pp.
225
238
(in Japanese).
23.
Hasegawa
,
T.
, and
Tanaka
,
R.
,
1998
, “
High Temperature Air Combustion. Revolution in Combustion Technology. Part I: New Findings on High Temperature Air Combustions
,”
JSME Int. J. Ser. B
,
41
(
4
), pp.
1079
1084
.
24.
Correa
,
S. M.
, and
Gulati
,
A.
,
1992
, “
Measurements and Modeling of a Bluff Body Stabilized Flame
,”
Combust. Flame
,
89
(
2
), pp.
195
213
.
25.
Ansys
,
2003
, Fluent User's Manual, Ansys, Inc., Canonsburg, PA.
26.
Ansys
,
2009
, “
Determining Turbulence Parameters
,” Fluent User's Guide,
Ansys, Inc.
,
Canonsburg, PA
.
27.
Cheng
,
P.
,
1964
, “
Two-Dimensional Radiating Gas Flow by a Moment Method
,”
AIAA J.
,
2
(
9
), pp.
1662
1664
.
28.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
Hemisphere
,
Washington, DC
.
29.
Kontogeorgos
,
D.
,
Keramida
,
E.
, and
Founti
,
M.
,
2007
, “
Assessment of Simplified Thermal Radiation Models for Engineering Calculations in Natural Gas-Fired Furnace
,”
Int. J. Heat Mass Transfer
,
50
(
25
), pp.
5260
5268
.
30.
Gosman
,
A.
, and
Lockwood
,
F.
,
1973
, “
Incorporation of a Flux Model for Radiation Into a Finite-Difference Procedure for Furnace Calculations
,”
Proc. Symp. (Int.) Combust.
,
14
(
1
), pp.
661
671
.
31.
Ilbas
,
M.
,
1997
, “
Studies of Ultra Low NOx Burners
,” Ph.D. thesis,
University of Wales
,
Cardiff, UK
.
32.
Ilbas
,
M.
,
2005
, “
The Effect of Thermal Radiation and Radiation Models on Hydrogen–Hydrocarbon Combustion Modelling
,”
Int. J. Hydrogen Energy
,
30
(
10
), pp.
1113
1126
.
33.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
34.
Christo
,
F. C.
, and
Dally
,
B. B.
,
2005
, “
Modeling Turbulent Reacting Jets Issuing Into a Hot and Diluted Coflow
,”
Combust. Flame
,
142
(
1
), pp.
117
129
.
35.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization-Group Analysis of Turbulence
,”
Phys. Rev. Lett.
,
57
(
14
), pp.
1722
1724
.
36.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
37.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.
38.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Presenty and Future
,”
Int. J. Heat Fluid Flow
,
10
(
4
), pp.
282
300
.
39.
Ansys
,
2011
,
Ansys Fluent Theory Guide
,
Ansys, Inc.
,
Canonsburg, PA
, p.
794
.
40.
Hossain
,
M.
,
Jones
,
J.
, and
Malalasekera
,
W.
,
2001
, “
Modelling of a Bluff-Body Nonpremixed Flame Using a Coupled Radiation/Flamelet Combustion Model
,”
Flow, Turbul. Combust.
,
67
(
3
), pp.
217
234
.
41.
Hossain
,
M.
,
1999
, “
CFD Modelling of Turbulent Non-Premixed Combustion
,” Ph.D. thesis, Loughborough University, Loughborough, UK.
42.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
43.
Dibble
,
R.
,
Warnatz
,
J.
, and
Maas
,
U.
,
1996
,
Combustion: Physical and Chemical Fundamentals, Modelling and Simulations, Experiments, Pollutant Formation
,
Springer
,
New York
.
44.
Grudno
,
A.
, and
Seshadri
,
K.
,
1996
, “
Characteristic Residence Times of Laminar Nonpremixed Flames at Extinction
,”
Combust. Sci. Technol.
,
112
(
1
), pp.
199
210
.
45.
MacDonald
,
M. A.
,
Jayaweera
,
T. M.
,
Fisher
,
E. M.
, and
Gouldin
,
F. C.
,
1998
, “
Variation of Chemically Active and Inert Flame-Suppression Effectiveness With Stoichiometric Mixture Fraction
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
2749
2756
.
46.
Zhao
,
D.
,
Yamashita
,
H.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Furuhata
,
T.
,
2002
, “
Behavior and Effect on NOx Formation of OH Radical in Methane–Air Diffusion Flame With Steam Addition
,”
Combust. Flame
,
130
(
4
), pp.
352
360
.
You do not currently have access to this content.