A comparative assessment is made of two implementations of the rate-controlled constrained-equilibrium (RCCE) method. These are the constraint and constraint potential formulations in which rate equations are solved for the RCCE constraints and constraint potentials, respectively. The two forms are equivalent mathematically; however, they involve different numerical procedures and thus show different computational performance. The main objective of this study is to compare the accuracy and numerical efficiency of the two formulations to attain the most effective implementation of the RCCE in turbulent combustion simulations. The RCCE method is applied to study methane oxygen combustion in an adiabatic, isobaric well stirred reactor. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. Performance studies are conducted and RCCE results are compared with those obtained by direct integration of detailed chemical kinetics. The results show that both methods provide very accurate representation of the kinetics. It is also demonstrated that while the constraint form involves less numerical stiffness, the constraint potential implementation results in more saving in computation time.

References

1.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.
2.
Pope
,
S. B.
, and
Ren
,
Z.
,
2009
, “
Efficient Implementation of Chemistry in Computational Combustion
,”
Flow, Turbul. Combust.
,
82
(
4
), pp.
437
453
.
3.
Echekki
,
T.
,
2009
, “
Multiscale Methods in Turbulent Combustion: Strategies and Computational Challenges
,”
Comput. Sci. Discovery
,
2
(
1
), p.
013001
.
4.
Pope
,
S. B.
,
2013
, “
Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1
31
.
5.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
6.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
7.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1989
, “
Rate-Controlled Constrained Equilibrium Calculation of Ignition Delay Times in Hydrogen-Oxygen Mixtures
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1705
1713
.
8.
Bishnu
,
P.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Modell.
,
1
(
3
), pp.
295
312
.
9.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Modell.
,
2
(
1
), pp.
81
94
.
10.
Hiremath
,
V.
,
Lantz
,
S. R.
,
Wang
,
H.
, and
Pope
,
S. B.
,
2012
, “
Computationally-Efficient and Scalable Parallel Implementation of Chemistry in Simulations of Turbulent Combustion
,”
Combust. Flame
,
159
(
10
), pp.
3096
3109
.
11.
Hiremath
,
V.
,
Lantz
,
S. R.
,
Wang
,
H.
, and
Pope
,
S. B.
,
2013
, “
Large-Scale Parallel Simulations of Turbulent Combustion Using Combined Dimension Reduction and Tabulation of Chemistry
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
205
215
.
12.
Kim
,
J.
, and
Pope
,
S. B.
,
2014
, “
Effects of Combined Dimension Reduction and Tabulation on the Simulations of a Turbulent Premixed Flame Using a Large-Eddy Simulation/Probability Density Function Method
,”
Combust. Theory Modell.
,
18
(
3
), pp.
388
413
.
13.
Løvås
,
T.
,
Navarro-Martinez
,
S.
, and
Rigopoulos
,
S.
,
2011
, “
On Adaptively Reduced Chemistry in Large Eddy Simulations
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1339
1346
.
14.
Navarro-Martinez
,
S.
, and
Rigopoulos
,
S.
,
2011
, “
Large Eddy Simulation of a Turbulent Lifted Flame Using Conditional Moment Closure and Rate-Controlled Constrained Equilibrium
,”
Flow, Turbul. Combust.
,
87
(
2
), pp.
407
423
.
15.
Chatzopoulos
,
A. K.
, and
Rigopoulos
,
S.
,
2013
, “
A Chemistry Tabulation Approach Via Rate-Controlled Constrained Equilibrium (RCCE) and Artificial Neural Networks (ANNs), With Application to Turbulent Non-Premixed CH4/H2/N2 Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1465
1473
.
16.
Elbahloul
,
S.
, and
Rigopoulos
,
S.
,
2015
, “
Rate-Controlled Constrained Equilibrium (RCCE) Simulations of Turbulent Partially Premixed Flames (Sandia D/E/F) and Comparison With Detailed Chemistry
,”
Combust. Flame
,
162
(
5
), pp.
2256
2271
.
17.
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2013
, “
Principle of Detailed Balance and the Second Law of Thermodynamics in Chemical Kinetics
,”
ASME J. Energy Res. Technol.
,
135
(
4
), p.
041901
.
18.
Slattery
,
J. C.
,
Cizmas
,
P. G.
,
Karpetis
,
A. N.
, and
Chambers
,
S. B.
,
2011
, “
Role of Differential Entropy Inequality in Chemically Reacting Flows
,”
Chem. Eng. Sci.
,
66
(
21
), pp.
5236
5243
.
19.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modelling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
20.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
21.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
22.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
23.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2014
, “
Constrained-Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Res. Technol.
,
136
(
3
), p.
032205
.
24.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Res. Technol.
,
137
(
6
), p.
062203
.
25.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained Equilibrium Codes and Their Applications in Nonequilibrium Thermodynamics
,”
ASME J. Energy Res. Technol.
,
123
(
3
), pp.
214
220
.
26.
Ugarte
,
S.
,
Gao
,
S.
, and
Metghalchi
,
H.
,
2005
, “
Application of Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
27.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, NASA Report No. 1311.
28.
Reynolds
,
W. C.
,
1986
, “
The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN
,” Stanford University, Stanford, CA, Report No. ME 270 HO 7.
29.
Pope
,
S. B.
,
2003
, “
The Computation of Constrained and Unconstrained Equilibrium Compositions of Ideal Gas Mixtures Using Gibbs Function Continuation
,” Cornell University, Ithaca, NY, Report No. FDA 03–02.
30.
Pope
,
S. B.
,
2004
, “
Gibbs Function Continuation for the Stable Computation of Chemical Equilibrium
,”
Combust. Flame
,
139
(
3
), pp.
222
226
.
31.
Tang
,
Q.
, and
Pope
,
S. B.
,
2002
, “
Implementation of Combustion Chemistry by In Situ Adaptive Tabulation of Rate-Controlled Constrained Equilibrium Manifolds
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1411
1417
.
You do not currently have access to this content.