Abstract

In this work, the application of a phenomenological model to determine engine-out hydrocarbon (HC) emissions in driving cycles is presented. The calculation is coupled to a physical-based simulation environment consisting of interacting submodels of engine, vehicle, and engine control. As a novelty, this virtual calibration methodology can be applied to optimize the energy conversion inside a spark-ignited (SI) internal combustion engine at transient operation. Using detailed information about the combustion process, the main origins and formation mechanisms of unburned HCs like piston crevice, oil layer, and wall quenching are considered in the prediction, as well as the in-cylinder postoxidation. Several parameterization approaches, especially, of the oil layer mechanism are discussed. After calibrating the emission model to a steady-state engine map, the transient results are validated successfully against measurements of various driving cycles based on different calibration strategies of engine operation.

References

1.
Weiss
,
M.
,
Bonnel
,
P.
,
Hummel
,
R.
, and
Steininger
,
N.
,
2013
, “
A Complementary Emissions Test for Light-Duty Vehicles: Assessing the Technical Feasibility of Candidate Procedures
,” European Commission, JRC Scientific and Policy Reports, Brussels, Belgium, Report No. EUR 25572 EN.
2.
Blizard
,
N. C.
, and
Keck
,
J. C.
,
1974
, “
Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines
,”
SAE
Paper No. 740191.
3.
Tabaczynski
,
R.
,
Ferguson
,
C.
, and
Radhakrishnan
,
K.
,
1977
, “
A Turbulent Entrainment Model for Spark-Ignition Engine Combustion
,”
SAE
Paper No. 770647.
4.
Santavicca
,
D.
,
Liou
,
D.
, and
North
,
G.
,
1990
, “
A Fractal Model of Turbulent Flame Kernel Growth
,”
SAE
Paper No. 900024.
5.
D'Errico
,
G.
, and
Onorati
,
A.
,
2006
, “
Thermo-Fluid Dynamic Modelling of a Six-Cylinder Spark Ignition Engine With a Secondary Air Injection System
,”
Int. J. Engine Res.
,
7
(
1
), pp.
1
16
.
6.
Dorsch
,
M.
,
Neumann
,
J.
, and
Hasse
,
C.
,
2014
, “
Detailed Modeling of SI Engines in Driving Cycle Simulations for Fuel Consumption Analysis
,” FISITA World Automotive Congress, Maastricht, The Netherlands, June 2–6, Paper No. F2014-CET-017.
7.
Dorsch
,
M.
,
Neumann
,
J.
, and
Hasse
,
C.
,
2014
, “
Nutzung der Ladungswechsel- und Motorprozesssimulation zur Gesamtsystembewertung von CO2- und Rohemissionen in Fahrzyklen
,” 7. MTZ-Fachtagung Ladungswechsel im Verbrennungsmotor.
8.
Cheng
,
W. K.
,
Hamrin
,
D.
,
Heywood
,
J. B.
,
Hochgreb
,
S.
,
Min
,
K.
, and
Norris
,
M.
,
1993
, “
An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines
,”
SAE
Paper No. 932708.
9.
Min
,
K.
,
1994
, “
The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in Spark Ignition Engines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Hochgreb
,
S.
,
1998
, “
Combustion-Related Emissions in SI Engines
,”
Handbook of Air Pollution From Internal Combustion Engines: Pollutant Formation and Control
,
Academic
,
San Diego, CA
.
11.
Borrmeister
,
J.
, and
Hübner
,
W.
,
1997
, “
Einfluss der Brennraumform auf HC-Emission und den Verbrennungsablauf
,”
Motortech. Z.
,
58
(
7/8
), pp.
2
8
.
12.
Janssen
,
C.
,
2010
, “
Möglichkeiten zur Prädiktion von unverbrannten Kohlenwasserstoffen in einem direkteinspritzenden Ottomotor
,” Ph.D. thesis, Universität Rostock, Rostock, Germany.
13.
Merker
,
G. P.
,
Schwarz
,
C.
,
Stiesch
,
G.
, and
Otto
,
F.
,
2006
,
Verbrennungsmotoren-Simulation der Verbrennung und Schadstoffbildung
,
Vieweg+Teubner Verlag
,
Wiesbaden, Germany
.
14.
Huang
,
Z.
,
Pan
,
K.
,
Li
,
J.
,
Zhou
,
L.
, and
Jiang
,
D.
,
1996
, “
An Investigation on Simulation Models and Reduction Methods of Unburned Hydrocarbon Emissions in Spark Ignition Engines
,”
Combust. Sci. Technol.
,
115
(
1–3
), pp.
105
123
.
15.
Suck
,
G.
,
2001
, “
Untersuchung der HC-Quellen an einem Ottomotor mit Direkteinspritzung
,” Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
16.
Spicher
,
U.
,
Feng
,
B.
, and
Kölmel
,
A.
,
1999
, “
HC Rohemissionen beim Kaltstart in der Warmlaufphase sowie bei Last-und Drehzahlsprungen
,” Forschungsbericht FZKA-BWPLUS, Institut für Kolbenmaschinen Universität Karlsruhe, Germany, Report No. PEF396003.
17.
Dent
,
J. C.
, and
Lakshminarayanan
,
P. A.
,
1983
, “
A Model for Adsorption and Desorption of Fuel Vapour by Cylinder Lubricating Oil Films and Its Contribution to Hydrocarbon Emissions
,”
SAE
Paper No. 830652.
18.
Frølund
,
K.
, and
Schramm
,
J.
,
1997
, “
Simulation of HC-Emissions From SI-Engines—A Parametric Study
,”
SAE
Paper No. 972893.
19.
Gatellier
,
B.
,
Trapy
,
J.
,
Herrier
,
D.
,
Quelin
,
J. M.
, and
Galliot
,
F.
,
1992
, “
Hydrocarbon Emissions of SI Engines as Influenced by Fuel Absorption-Desorption in Oil Films
,”
SAE
Paper No. 920095.
20.
Sodre
,
J. R.
,
1998
, “
A Parametric Model for Spark Ignition Engine Turbulent Flame Speed
,”
SAE
Paper No. 982920.
21.
Hasse
,
C.
,
Bollig
,
M.
,
Peters
,
N.
, and
Dwyer
,
H. A.
,
2000
, “
Quenching of Laminar Iso-Octane Flames at Cold Walls
,”
Combust. Flame
,
122
(
1–2
), pp.
117
129
.
22.
Schramm
,
J.
, and
Sorenson
,
S. C.
,
1990
, “
A Model for Hydrocarbon Emissions From SI Engines
,”
SAE
Paper No. 902169.
23.
Trinker
,
F. H.
,
Chen
,
J.
, and
Davis
,
G. C.
,
1993
, “
A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects
,”
SAE
Paper No. 932705.
24.
Norris
,
M. G.
, and
Hochgreb
,
S.
,
1996
, “
Extent of Oxidation From the Lubricant Oil Layer in Spark-Ignition Engines
,”
SAE
Paper No. 960069.
25.
Nefischer
,
A.
,
Neumann
,
J.
,
Stanciu
,
A.
, and
Wimmer
,
A.
,
2014
, “
Quasi-Dimensional Modeling of Turbulence-Driven Phenomena in SI Engines
,”
Int. J. Veh. Des.
,
66
(
3
), pp.
297
316
.
26.
Grasreiner
,
S.
,
Neumann
,
J.
,
Luttermann
,
C.
,
Wensing
,
M.
, and
Hasse
,
C.
,
2014
, “
A Quasi-Dimensional Model of Turbulence and Global Charge Motion for SI Engines With Fully-Variable Valve-Trains
,”
Int. J. Engine Res.
,
15
(
7
), pp.
805
816
.
27.
Grasreiner
,
S.
,
Neumann
,
J.
,
Wensing
,
M.
, and
Hasse
,
C.
,
2015
, “
A Quasi-Dimensional Model of the Ignition Delay for Combustion Modeling in SI Engines
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071502
.
28.
Wentworth
,
J. T.
,
1974
, “
Effect of Combustion Chamber Shape and Spark Location on Exhaust Nitric Oxide and Hydrocarbon Emissions
,”
SAE
Paper No. 740529.
29.
Yildrim
,
A. M.
,
Gul
,
M. Z.
,
Ozatay
,
E.
, and
Karamangil
,
I.
,
2006
, “
Simulation of Hydrocarbon Emissions From an SI Engine
,”
SAE
Paper No. 2006-01-1196.
30.
Linna
,
J. R.
,
1997
, “
Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions From Spark-Ignition Engines
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
31.
Sodre
,
J. R.
, and
Yates
,
D. A.
,
1997
, “
An Improved Model for Spark Ignition Engine Exhaust Hydrocarbon
,”
SAE
Paper No. 971011.
32.
Wilke
,
C. R.
, and
Chang
,
P.
,
1955
, “
Correlation of Diffusion Coefficients in Dilute Solutions
,”
AIChE J.
,
1
(
2
), pp.
264
270
.
33.
Norris
,
M. G.
, and
Hochgreb
,
S.
,
1994
, “
Novel Experiment on In-Cylinder Desorption of Fuel From Oil Layer
,”
SAE
Paper No. 941963.
34.
Watkins
,
R. C.
,
1984
, “
The Physics of Lubricant Additives
,”
Phys. Technol.
,
15
(
6
), pp.
321
328
.
35.
Linna
,
J.-R.
,
Malberg
,
H.
,
Bennett
,
P. J.
,
Palmer
,
J.
,
Tian
,
T.
, and
Cheng
,
W. K.
,
1997
, “
Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions From Spark-Ignition Engines
,”
SAE
Paper No. 972892.
36.
Kreith
,
F.
,
1960
,
Principles of Heat Transfer
,
International Textbook Company
,
Scranton, PA
.
37.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Paper No. 670931.
38.
Grill
,
M.
,
Billinger
,
T.
, and
Bargende
,
M.
,
2006
, “
Quasi-Dimensional Modeling of Spark Ignition Engine Combustion With Variable Valve Train
,”
SAE
Paper No. 2006-01-1107.
39.
Peters
,
N.
,
2000
,
Turbulent Combustion
(Cambridge Monographs on Mechanics),
Cambridge University
,
Cambridge, UK
.
40.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene an High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
41.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
(
3
), pp.
253
280
.
42.
Joos
,
F.
,
2006
,
Technische Verbrennung, Verbrennungstechnik, Verbrennungsmodellierung, Emissionen
,
Springer Verlag
,
Berlin
.
43.
Wu
,
K.-C.
,
Hochgreb
,
S.
, and
Norris
,
M. G.
,
1995
, “
Chemical Kinetic Modeling of Exhaust Hydrocarbon Oxidation
,”
Combust. Flame
,
100
(
1
), pp.
193
201
.
44.
Oliveira
,
I. B.
, and
Hochgreb
,
S.
,
1999
, “
Effect of Operating Conditions and Fuel Type on Crevice HC Emissions: Model Results and Comparison With Experiments
,”
SAE
Paper No. 1999-01-3578.
45.
Lavoie
,
G. A.
,
1978
, “
Correlations of Combustion Data for S.I. Engine Calculations—Laminar Flame Speed, Quench Distance and Global Reaction Rates
,”
SAE
Paper No. 780229.
46.
Sodre
,
J. R.
,
1999
, “
Further Improvements on a HC Emissions Model: Partial Burn Effects
,”
SAE
Paper No. 1999-01-0222.
47.
Min
,
K.
, and
Cheng
,
W. K.
,
1995
, “
Oxidation of the Piston Crevice Hydrocarbon During the Expansion Process in a Spark Ignition Engine
,”
Combust. Sci. Technol.
,
106
(
617
), pp.
307
326
.
You do not currently have access to this content.