In this paper, an inverse problem is solved for estimating parameters of a steam-driven water–lithium bromide (LiBr) vapor absorption refrigeration system (VARS) using a differential evolution (DE)-based inverse approach. Initially, a forward model simulates the steady-state performance of the VARS at various operating temperatures and evaporator cooling loads (CLs). A DE-based inverse analysis is then performed to estimate the operating parameters taking VARS coefficient of performance (COP), CL, total irreversibility, and exergy efficiency as objective functions (one objective function at a time). DE-based inverse technique estimates the parameters within a very short period of elapsed time. Over 50 and 100 numbers of generations are sufficient for retrieval of COP and exergy efficiency, respectively, while it requires 150 generations for total irreversibility and CL. The study reveals that multiple combinations of parameters within a given range satisfy a particular objective function which serves as design guidelines in selecting appropriate operating parameters.

References

References
1.
Wu
,
S.
, and
Eames
,
I. W.
,
2000
, “
Innovations in Vapour-Absorption Cycles
,”
Appl. Energy
,
66
(
3
), pp.
251
266
.
2.
Karamangil
,
M. I.
,
Coskun
,
S.
,
Kaynakli
,
O.
, and
Yamankaradeniz
,
N.
,
2010
, “
A Simulation Study of Performance Evaluation of Single-Stage Absorption Refrigeration System Using Conventional Working Fluids and Alternatives
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1969
1978
.
3.
Kaynakli
,
O.
, and
Kilic
,
M.
,
2007
, “
Theoretical Study on the Effect of Operating Conditions on Performance of Absorption Refrigeration System
,”
Energy Convers. Manage.
,
48
(
2
), pp.
599
607
.
4.
Joudi
,
K. A.
, and
Lafta
,
A. H.
,
2001
, “
Simulation of a Simple Absorption Refrigeration System
,”
Energy Convers. Manage.
,
42
(
13
), pp.
1575
1605
.
5.
Priedeman
,
D. K.
,
Garrabrant
,
M. A.
,
Mathias
,
J. A.
,
Stout
,
R. E.
, and
Christensen
,
R. N.
,
2001
, “
Performance of a Residential-Sized GAX Absorption Chiller
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
236
241
.
6.
Adewusi
,
S. A.
, and
Zubair
,
S. M.
,
2004
, “
Second Law Based Thermodynamic Analysis of Ammonia–Water Absorption Systems
,”
Energy Convers. Manage.
,
45
(
15–16
), pp.
2355
2369
.
7.
Kilic
,
M.
, and
Kaynakli
,
O.
,
2007
, “
Second Law-Based Thermodynamic Analysis of Water-Lithium Bromide Absorption Refrigeration System
,”
Energy
,
32
(
8
), pp.
1505
1512
.
8.
Gomri
,
R.
, and
Hakimi
,
R.
,
2008
, “
Second Law Analyses of Double Effect Vapour Absorption Cooler System
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3343
3348
.
9.
Figueredo
,
G. R.
,
Bourouis
,
M.
, and
Coronas
,
A.
,
2008
, “
Thermodynamic Modeling of a Two-Stage Absorption Chiller Driven at Two-Temperature Levels
,”
Appl. Therm. Eng.
,
28
(
2–3
), pp.
211
217
.
10.
Gomri
,
R.
,
2008
, “
Thermodynamic Evaluation of Triple Effect Absorption Chiller
,”
Second International Conference on Thermal Issues in Emerging Technologies
(
ThETA '08)
, Cairo, Egypt, Dec. 17–20, pp.
245
250
.
11.
Bhowmik
,
A.
,
Singla
,
R. K.
,
Roy
,
P. K.
,
Prasad
,
D. K.
,
Das
,
R.
, and
Repaka
,
R.
,
2013
, “
Predicting Geometry of Rectangular and Hyperbolic Fin Profiles With Temperature-Dependent Thermal Properties Using Decomposition and Evolutionary Methods
,”
Energy Convers. Manage.
,
74
, pp.
535
547
.
12.
Parwani
,
A. K.
,
Talukdar
,
P.
, and
Subbarao
,
P. M. V.
,
2013
, “
Performance Evaluation of Hybrid Differential Evolution Approach for Estimation of the Strength of a Heat Source in a Radiatively Participating Medium
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
552
560
.
13.
Zentar
,
R.
,
Hicher
,
P. Y.
, and
Moulin
,
G.
,
2001
, “
Identification of Soil Parameters by Inverse Analysis
,”
Comput. Geotech.
,
28
(
2
), pp.
129
144
.
14.
Szeliga
,
D.
,
Gawad
,
J.
, and
Pietrzyk
,
M.
,
2006
, “
Inverse Analysis for Identification of Rheological and Friction Models in Metal Forming
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
48–49
), pp.
6778
6798
.
15.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
,
2010
, “
Inverse Analysis Applied to Retrieval of Parameters and Reconstruction of Temperature Field in a Transient Conduction–Radiation Heat Transfer Problem Involving Mixed Boundary Conditions
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
52
57
.
16.
Das
,
R.
,
Mishra
,
S. C.
,
Ajith
,
M.
, and
Uppaluri
,
R.
,
2008
, “
An Inverse Analysis of a Transient 2-D Conduction–Radiation Problem Using the Lattice Boltzmann Method and the Finite Volume Method Coupled With the Genetic Algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
11
), pp.
2060
2077
.
17.
Gogoi
,
T. K.
, and
Das
,
R.
,
2013
, “
Inverse Analysis of an Internal Reforming Solid Oxide Fuel Cell System Using Simplex Search Method
,”
Appl. Math. Modell.
,
37
(
10–11
), pp.
6994
7015
.
18.
Gogoi
,
T. K.
, and
Das
,
R.
,
2014
, “
A Combined Cycle Plant With Air and Fuel Recuperator for Captive Power Application, Part 2: Inverse Analysis and Parameter Estimation
,”
Energy Convers. Manage.
,
79
, pp.
778
789
.
19.
Orlande
,
H. R. B.
,
Fudym
,
O.
,
Maillet
,
D.
, and
Cotta
,
R. M.
,
2011
,
Thermal Measurements and Inverse Techniques
,
CRC Press
,
Boca Raton, FL
.
20.
Misra
,
R. D.
,
Sahoo
,
P. K.
,
Sahoo
,
S.
, and
Gupta
,
A.
,
2003
, “
Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System
,”
Int. J. Refrig.
,
26
(
2
), pp.
158
169
.
21.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermoeconomic Optimization of a LiBr/H2O Absorption Chiller Using Structural Method
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
119
124
.
22.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermo-Economic Evaluation and Optimization of a Double-Effect H2O/LiBr Vapour-Absorption Refrigeration System
,”
Int. J. Refrig.
,
28
(
3
), pp.
331
343
.
23.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2006
, “
Thermoeconomic Evaluation and Optimization of an Aqua-Ammonia Vapour-Absorption Refrigeration System
,”
Int. J. Refrig.
,
29
(
1
), pp.
47
59
.
24.
Gebreslassie
,
B. H.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2012
, “
Multi-Objective Optimization of Sustainable Single-Effect Water/Lithium Bromide Absorption Cycle
,”
Renewable Energy
,
46
, pp.
100
110
.
25.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.
26.
de Jong
,
K. A.
,
2006
,
Evolutionary Computation: A Unified Approach
,
MIT Press
,
Cambridge, MA
.
27.
Mallipeddi
,
R.
,
Suganthan
,
P. N.
,
Pan
,
Q. K.
, and
Tasgetiren
,
M. F.
,
2011
, “
Differential Evolution Algorithm With Ensemble of Parameters and Mutation Strategies
,”
Appl. Soft Comput.
,
11
(
2
), pp.
1679
1696
.
28.
Lansing
,
F. L.
,
1976
, “
Computer Modeling of a Single Stage Lithium Bromide/Water Absorption Refrigeration Unit
,” Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
Deep Space Network
Progress Report No. 42–32, pp.
247
257
.
29.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H. J.
,
Kruse
,
A.
,
Mares
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stocker
,
I.
,
Sifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trubenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
181
.
30.
Patek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of Thermodynamic Properties of LiBr-H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
31.
Gogoi
,
T. K.
,
Pandey
,
M.
, and
Das
,
R.
,
2015
, “
Estimation of operating parameters of a reheat regenerative power cycle using simplex search and differential evolution based inverse methods
,”
Energy Convers. Manage.
,
91
, pp.
204
218
.
32.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution: A Simple and Efficient Heuristic for Global Optimization Over Continuous Space
,”
J. Glob. Optim.
,
11
(
4
), pp.
341
359
.
33.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
,
University of Michigan Press
,
Ann Arbor, MI
.
34.
Ardia
,
D.
,
Boudt
,
K.
,
Carl
,
P.
,
Mullen
,
K. M.
, and
Peterson
,
B. G.
,
2011
, “
Differential Evolution With DEoptim: An Application to Non-Convex Portfolio Optimization
,”
The R J.
,
3
(
1
), pp.
27
34
.
35.
Lu
,
F.
, and
Gao
,
L.
,
2010
, “
A Novel Differential Evolution Algorithm for Global Search and Sensor Selection
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
2215
2220
.
36.
Qin
,
A. K.
, and
Suganthan
,
P. N.
,
2005
, “
Self-Adaptive Differential Evolution Algorithm for Numerical Optimization
,” IEEE Congress on Evolutionary Computation (
CEC
), Edinburgh, UK, Sept. 2–5, pp.
1785
1791
.
37.
Gogoi
,
T. K.
, and
Talukdar
,
K.
,
2014
, “
Thermodynamic Analysis of a Combined Reheat Regenerative Thermal Power Plant and Water-LiBr Vapour Absorption Refrigeration System
,”
Energy Convers. Manage.
,
78
, pp.
595
610
.
38.
Gogoi
,
T. K.
, and
Talukdar
,
K.
,
2014
, “
Exergy Based Parametric Analysis of a Combined Reheat Regenerative Thermal Power Plant and Water–LiBr Vapor Absorption Refrigeration System
,”
Energy Convers. Manage.
,
83
, pp.
119
132
.
You do not currently have access to this content.