Effective energy planning and governmental decision-making policies heavily rely on accurate forecast of energy demand. This paper discusses and compares five different forecasting techniques to model energy demand in the United States using economic and demographic factors. Two artificial neural network (ANN) models, two regression analysis models, and one autoregressive integrated moving average (ARIMA) model are developed based on the historical data from 1950 to 2013. While ANN model 1 and regression model 1 use gross domestic product (GDP), gross national product (GNP), and per capita personal income as independent input factors, ANN model 2 and regression model 2 employ GDP, GNP, and population (POP) as the predictive factors. The forecasted values resulted from these models are compared with the forecast made by the U.S. Energy Information Administration (EIA) for the period of 2014–2019. The forecasted results of ANN models and regression model 1 are close to those of the U.S. EIA; however, the results of regression model 2 and ARIMA model are significantly different from the forecast made by the U.S. EIA. Finally, a comparison of the forecasted values resulted from three efficient models showed that the energy demand would vary between 95.51 and 100.08 quadrillion British thermal unit (btu) for the period of 2014–2019. In addition, we have discussed the possibility of self-sufficiency of the United States in terms of energy generation based on the information of current available technologies nationwide.

References

References
1.
EIA
, “
International Energy Statistics
,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2
2.
EIA
, “
Annual Energy Review
,” U.S. Energy Information Administration, Washington, DC, www.eia.gov/totalenergy/data/annual/index.cfm#summary
3.
Dincer
,
I.
, and
Dost
,
S.
,
1996
, “
Energy Intensities for Canada
,”
J. Appl. Energy
,
53
(
3
), pp.
283
298
.
4.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2009
, “
Electricity Consumption Forecasting in Italy Using Linear Regression Models
,”
J. Energy
,
34
(
9
), pp.
1413
1421
.
5.
Mohamed
,
Z.
, and
Bodger
,
P.
,
2005
, “
Forecasting Electricity Consumption in New Zealand Using Economic and Demographic Variables
,”
J. Energy
,
30
(
10
), pp.
1833
1843
.
6.
Ranjan
,
M.
, and
Jain
,
V. K.
,
1999
, “
Modelling of Electrical Energy Consumption in Delhi
,”
J. Energy
,
24
, pp.
351
361
.
7.
Sözen
,
A.
, and
Arcaklioglu
,
E.
,
2007
, “
Prediction of Net Energy Consumption Based on Economic Indicators (GNP and GDP) in Turkey
,”
J. Energy Policy
,
35
(
10
), pp.
4981
4992
.
8.
Sözen
,
A.
,
Arcaklioglu
,
E.
, and
Özkaymak
,
M.
,
2005
, “
Turkey's Net Energy Consumption
,”
J. Appl. Energy
,
81
(
2
), pp.
209
221
.
9.
Sözen
,
A.
,
2009
, “
Future Projection of the Energy Dependency of Turkey Using Artificial Neural Network
,”
J. Energy Policy
,
37
(
11
), pp.
4827
4833
.
10.
Geem
,
Z. W.
, and
Roper
,
W. E.
,
2009
, “
Energy Demand Estimation of South Korea Using Artificial Neural Network
,”
J. Energy Policy
,
37
(
10
), pp.
4049
4054
.
11.
Geem
,
Z. W.
,
2011
, “
Transport Energy Demand Modeling of South Korea Using Artificial Neural Network
,”
J. Energy Policy
,
39
(
8
), pp.
4644
4650
.
12.
Ekonomou
,
L.
,
2010
, “
Greek Long-Term Energy Consumption Prediction Using Artificial Neural Networks
,”
J. Energy
,
35
(
2
), pp.
512
517
.
13.
Kankal
,
M.
,
Akpinar
,
A.
,
Kömürcü
,
M. I.
, and
Özsahin
,
T. S.
,
2011
, “
Modeling and Forecasting of Turkey's Energy Consumption Using Socio-Economic and Demographic Variables
,”
J. Appl. Energy
,
88
(
5
), pp.
1927
1939
.
14.
Islam
,
S. M.
,
Al-Alawi
,
S. M.
, and
Ellithy
,
K. A.
,
1995
, “
Forecasting Monthly Electric Load and Energy for a Fast Growing Utility Using an Artificial Neural Network
,”
J. Electr. Power Syst. Res.
,
34
(
1
), pp.
1
9
.
15.
Pao
,
H.
,
2006
, “
Comparing Linear and Nonlinear Forecasts for Taiwan's Electricity Consumption
,”
J. Energy
,
31
(
12
), pp.
2129
2141
.
16.
Pao
,
H. T.
,
2009
, “
Forecasting Energy Consumption in Taiwan Using Hybrid Nonlinear Models
,”
Energy
,
34
(
10
), pp.
1438
1446
.
17.
Wang
,
X.
, and
Meng
,
M.
,
2012
, “
A Hybrid Neural Network and ARIMA Model for Energy Consumption Forecasting
,”
J. Comput.
,
7
(
5
), pp.
1184
1190
.
18.
Avami
,
A.
, and
Boroushaki
,
M.
,
2011
, “
Energy Consumption Forecasting of Iran Using Recurrent Neural Networks
,”
J. Energy Sources, Part B
,
6
(
4
), pp.
339
347
.
19.
Lise
,
W.
, and
Montfort
,
K. V.
,
2005
, “
Energy Consumption and GSP in Turkey: Is There a Co-Integration Relationship?
,”
International Conference on Policy Modeling
(
EcoMod2005
), Istanbul, Turkey, June 29–July 2.
20.
Soytas
,
U.
, and
Sari
,
R.
,
2003
, “
EC and GDP: Causality Relationship in G-7 Countries and Emerging Markets
,”
J. Energy Econ.
,
25
(
1
), pp.
33
37
.
21.
Paul
,
S.
, and
Bhattacharya
,
R. N.
,
2004
, “
Causality Between Energy Consumption and Economic Growth in India: A Note on Conflicting Results
,”
J. Energy Econ.
,
26
(
6
), pp.
977
983
.
22.
Yang
,
H.-Y.
,
2000
, “
A Note on the Causal Relationship Between Energy and GDP in Taiwan
,”
J. Energy Econ.
,
22
(
3
), pp.
309
317
.
23.
Ozturk
,
I.
, and
Acaravci
,
A.
,
2010
, “
The Causal Relationship Between Energy Consumption and GDP in Albania, Bulgaria, Hungary and Romania: Evidence From ARDL Bound Testing Approach
,”
J. Appl. Energy
,
87
(
6
), pp.
1938
1943
.
24.
Egelioglu
,
F.
,
Mohamad
,
A. A.
, and
Guven
,
H.
,
2001
, “
Economic Variables and Electricity Consumption in Northern Cyprus
,”
J. Energy
,
26
(
4
), pp.
355
362
.
25.
Soytas
,
U.
, and
Sari
,
R.
,
2006
, “
Energy Consumption and Income in G-7 Countries
,”
J. Policy Model.
,
28
(
7
), pp.
739
750
.
26.
Asafu-Adjaye
,
J.
,
2000
, “
The Relationship Between Energy Consumption, Energy Prices and Economic Growth: Time Series Evidence From Asian Developing Countries
,”
J. Energy Econ.
,
22
(
6
), pp.
615
625
.
27.
Mozumder
,
P.
, and
Marathe
,
A.
,
2007
, “
Causality Relationship Between Electricity Consumption and GDP in Bangladesh
,”
J. Energy Policy
,
35
(
1
), pp.
395
402
.
28.
Kialashaki
,
A.
, and
Reisel
,
J. R.
,
2013
, “
Modeling of the Energy Demand of the Residential Sector in the United States Using Regression Models and Artificial Neural Networks
,”
J. Appl. Energy
,
108
, pp.
271
280
.
29.
Ediger
,
V. S.
,
Akar
,
S.
, and
Ugurlu
,
B.
,
2006
, “
Forecasting Production of Fossil Fuel Sources in Turkey Using a Comparative Regression and ARIMA Model
,”
J. Energy Policy
,
34
(
18
), pp.
3836
3846
.
30.
Ediger
,
V. S.
, and
Akar
,
S.
,
2007
, “
ARIMA Forecasting of Primary Energy Demand by Fuel in Turkey
,”
J. Energy Policy
,
35
(
3
), pp.
1701
1708
.
31.
Saab
,
S.
,
Badr
,
E.
, and
Nasr
,
G.
,
2001
, “
Univariate Modeling and Forecasting of Energy Consumption: The Case of Electricity in Lebanon
,”
J. Energy
,
26
(
1
), pp.
1
14
.
32.
Hang
,
Y.
,
Deyun
,
X.
, and
Zhentao
,
L.
,
2009
, “
Regional Energy Demand Modeling and Forecasting
,”
6th International Conference on Fuzzy Systems and Knowledge Discovery
(
FSKD '09
), Tianjin, China, Aug. 14–16, pp.
599
603
.
33.
Kialashaki
,
A.
, and
Reisel
,
J. R.
,
2014
, “
Development and Validation of Artificial Neural Network Models of the Energy Demand in the Industrial Sector of the United States
,”
J. Energy
,
76
, pp.
749
760
.
34.
McCulloch
,
W.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.
35.
Song
,
J.
,
1998
, “
Neural Network Applications in Determining the Fatigue Crack Opening Load
,”
Int. J. Fatigue
,
20
(
1
), pp.
57
69
.
36.
Moriasi
,
D. N.
,
Arnold
,
J. G.
,
Van Liew
,
M. W.
,
Bingner
,
R. L.
,
Harmel
,
R. D.
, and
Veith
,
T. L.
,
2007
, “
Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations
,”
Trans. ASABE
,
50
(
3
), pp.
885
900
.
37.
Chen
,
T.-L.
, and
Lu
,
H.-C.
,
2012
Stochastic Multi-Site Capacity Planning of TFT–LCD Manufacturing Using Expected Shadow-Price Based Decomposition
,”
J. Appl. Math. Model.
,
36
(
12
), pp.
5901
5919
.
38.
EIA, 2015, “Primary Energy Consumption by Source,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_7.pdf
39.
EIA, 2015, “Primary Energy Production by Source,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_5.pdf
40.
Jacobson
,
M. Z.
, and
Delucchi
,
M. A.
,
2011
, “
Providing all Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials
,”
J. Energy Policy
,
39
(
3
), pp.
1154
1169
.
41.
Miller
,
J. S.
,
Stakenborghs
,
B.
, and
Tsai
,
R.
,
2011
, “
Improving Nuclear Power Plant's Operational Efficiencies in the USA
,”
19th International Conference on Nuclear Engineering
(
ICONE19
), Chiba, Japan, May 16–19, Paper No. ICONE19-43791.
42.
Bagher
,
A. M.
,
Vahid
,
M.
,
Mohsen
,
M.
, and
Parvin
,
D.
,
2015
, “
Hydroelectric Energy Advantages and Disadvantages
,”
Am. J. Energy Sci.
,
2
(
2
), pp.
17
20
.
43.
Wong
,
K. V.
,
2014
, “
Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024701
.
44.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
45.
Fthenakis
,
V.
,
Mason
,
J. E.
, and
Zweibel
,
K.
,
2009
, “
The Technical, Geographical, and Economic Feasibility for Solar Energy to Supply the Energy Needs of the US
,”
J. Energy Policy
,
37
(
2
), pp.
387
399
.
46.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
47.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sorum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
48.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
.
49.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Munoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
.
50.
EIA
, 2015, “Primary Energy Imports by Source,” U.S. Energy Information Administration, Washington, DC, http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_10.pdf
51.
EIA
, “
Primary Energy Exports by Source and Total Net Imports
,” http://www.eia.gov/totalenergy/data/monthly/pdf/sec1_11.pdf
You do not currently have access to this content.