The present study is an attempt to estimate the energy and the exergy potential of a biogas run dual fuel diesel engine using emulsified rice bran biodiesel (RBB) as pilot fuel at varying compression ratio (CR) and injection timing (IT). The objective is to arrive at an optimum setting of the engine based on dual fuel characteristics using energy and exergy analysis. The pilot fuel considered for this study is a two-phase stable water emulsion of RBB having water content (5%), surfactants (3%), and hydrophilic lipophilic balance value of 6. For experimentation, a 3.5 kW single cylinder, direct injection (DI), natural aspirated water-cooled, variable CR (VCR) diesel engine is converted into a dual fuel engine. Experiments are conducted for 12 different combinations of CR of 18, 17.5, and 17 and IT of 23 deg, 26 deg, 29 deg, and 32 deg bottom top dead center (BTDC) at full load conditions of brake mean effective pressure (BMEP) of 4.24 bar. The parameters analyzed are the energy and exergy potential of fuel input, shaft work, cooling water, exhaust gas, exergy destruction, peak cylinder pressure (PCP), peak heat release rate (PHRR), brake thermal efficiency (BTE), exergy efficiency, exhaust gas temperature (EGT), entropy generation rate, and emission analysis. The results indicate that the combination of CR = 18 and IT = 29 deg BTDC gives a better thermodynamic performance for this particular range of the operating parameters for a raw biogas run dual fuel diesel engine using emulsified RBB as pilot fuel.

References

References
1.
Demirbas
,
A.
,
2009
,
Biofuels: Securing the Planet’s Future Energy Needs
,
Springer
,
London
.
2.
Nijaguna
,
B. T.
,
2002
,
Biogas Technology
,
New Age International
,
New Delhi
.
3.
Korakianitis
,
T.
, and
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Diesel and Rapeseed Methyl Ester (RME) Pilot Fuels for Hydrogen and Natural Gas Dual-Fuel Combustion in Compression–Ignition Engines
,”
Fuel
,
90
(
7
), pp.
2384
2395
.
4.
Sahoo
,
B. B.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2009
, “
Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel Gas Diesel Engines—A Critical Review
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1151
1184
.
5.
Junior
,
R. F. B.
, and
Martins
,
C. A.
,
2015
, “
Emission Analysis of a Diesel Engine Operating in Diesel–Ethanol Dual-Fuel Mode
,”
Fuel
,
148
(
2015
), pp.
191
201
.
6.
Lata
,
D. B.
,
Misra
,
A.
, and
Medhekar
,
S.
,
2012
, “
Effect of Hydrogen and LPG Addition on the Efficiency and Emissions of a Dual Fuel Diesel Engine
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6084
6096
.
7.
Selim
,
M. Y. E.
,
2004
, “
Sensitivity of Dual Fuel Engine Combustion and Knocking Limits to Gaseous Fuel Composition
,”
Energy Convers. Manage.
,
45
(
3
), pp.
411
425
.
8.
Polk
,
A. C.
,
Carpenter
,
C. D.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2014
, “
An Investigation of Diesel–Ignited Propane Dual Fuel Combustion in a Heavy-Duty Diesel Engine
,”
Fuel
,
132
, pp.
135
148
.
9.
Banapurmath
,
N. R.
, and
Tewari
,
P. G.
,
2009
, “
Comparative Performance Studies of a 4-Stroke CI Engine Operated on Dual Fuel Mode with Producer Gas and Honge Oil and Its Methyl Ester (HOME) With and Without Carburetor
,”
Renewable Energy
,
34
(
4
), pp.
1009
1015
.
10.
Sahoo
,
B. B.
,
2011
, “
Clean Development Mechanism Potential of Compression Ignition Diesel Engines Using Gaseous Fuel in Dual Fuel Mode
,” Ph.D. thesis, Centre for Energy, IIT Guwahati, India.
11.
Yoon
,
S. H.
, and
Lee
,
C. S.
,
2011
, “
Experimental Investigation on the Combustion and Exhaust Emission Characteristics of Biogas—Biodiesel Dual-Fuel Combustion in a CI Engine
,”
Fuel Process. Technol.
,
92
(
5
), pp.
992
1000
.
12.
Henham
,
A.
, and
Makkar
,
M. K.
,
1998
, “
Combustion of Simulated Biogas in a Dual-Fuel Diesel Engine
,”
Energy Convers. Manage.
,
39
(
16–18
), pp.
2001
2009
.
13.
Walsh
,
J. L.
,
Ross
,
C. C.
,
Smith
,
M. S.
, and
Harper
,
S. R.
,
1989
, “
Utilization of Biogas
,”
Biomass
,
20
(
34
), pp.
277
290
.
14.
Bari
,
S.
,
1996
, “
Effect of Carbon Dioxide on the Performance of Biogas/Diesel Dual-Fuel Engine
,”
Renewable Energy
,
9
(
1–4
), pp.
1007
1010
.
15.
Luijten
,
C. C. M.
, and
Kerkhof
,
E.
,
2011
, “
Jatropha Oil and Biogas in a Dual Fuel CI Engine for Rural Electrification
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1426
1438
.
16.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2015
, “
Comparative Assessment of a Biogas Run Dual Fuel Diesel Engine With Rice Bran Oil Methyl Ester, Pongamia Oil Methyl Ester and Palm Oil Methyl Ester as Pilot Fuels
,”
Renewable Energy
,
81
, pp.
490
498
.
17.
Barik
,
D.
, and
Murugan
,
S.
,
2014
, “
Simultaneous Reduction of NOx and Smoke in a Dual Fuel DI Diesel Engine
,”
Energy Convers. Manage.
,
84
, pp.
217
226
.
18.
Debnath
,
B. K.
,
Bora
,
B. J.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2013
, “
Influence of Emulsified Palm Biodiesel as Pilot Fuel in a Biogas Run Dual Fuel Diesel Engine
,”
ASCE J. Energy Eng.
,
140
(
3
), p.
A4014005
.
19.
Bora
,
B. J.
, and
Saha
,
U. K.
,
2015
, “
Improving the Performance of a Biogas Powered Dual Fuel Diesel Engine Using Emulsified Rice Bran Biodiesel as Pilot Fuel Through Adjustment of Compression Ratio and Injection Timing
,”
ASME J. Eng. for Gas Turbines Power
,
137
(
9
), p.
091505
.
20.
Bora
,
B. J.
,
Saha
,
U. K.
,
Chatterjee
,
S.
, and
Veer
,
V.
,
2014
, “
Effect of Compression Ratio on Performance, Combustion and Emission Characteristics of a Dual Fuel Diesel Engine Run on Raw Biogas
,”
Energy Convers. Manage.
,
87
, pp.
1000
1009
.
21.
Sjogren
,
A.
,
1977
, “
Burning of Water-in-Oil Emulsions
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
297
305
.
22.
Nazha
,
M. A. A.
, and
Crookes
,
R. J.
,
1985
, “
Effect of Water Content on Pollutant Formation in a Burning Spray of Water-in-Diesel Fuel Emulsion
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
2001
2010
.
23.
Abu-Zaid
,
M.
,
2004
, “
Performance of Single Cylinder, Direct Injection Diesel Engine Using Water Fuel Emulsions
,”
Energy Conserv. Manage.
,
45
(
5
), pp.
697
705
.
24.
Lin
,
C.
, and
Wang
,
K.
,
2004
, “
Diesel Engine Performance and Emission Characteristics Using Three-Phase Emulsions as Fuel
,”
Fuel
,
83
, pp.
537
545
.
25.
Lin
,
C.
, and
Chen
,
L.
,
2006
, “
Engine Performance and Emission Characteristics of Three-Phase Diesel Emulsions Prepared by an Ultrasonic Emulsification Method
,”
Fuel
,
85
, pp.
593
600
.
26.
Lin
,
C.
, and
Chen
,
L.
,
2008
, “
Comparison of Fuel Properties and Emission Characteristics of Two and Three-Phase Emulsions Prepared by Ultrasonically Vibrating and Mechanically Homogenizing Emulsification Methods
,”
Fuel
,
87
, pp.
2154
2161
.
27.
Lin
,
C.
, and
Lin
,
H.
,
2007
, “
Engine Performance and Emission Characteristics of a Three-Phase Emulsion of Biodiesel Produced by Peroxidation
,”
Fuel Process. Technol.
,
88
(
1
), pp.
35
41
.
28.
Qi
,
D. H.
,
Chen
,
H.
,
Matthews
,
R. D.
, and
Brian
,
Y. Z. H.
,
2010
, “
Combustion and Emission Characteristics of Ethanol–Biodiesel–Water Micro-Emulsions Used in a Direct Injection Compression Ignition Engine
,”
Fuel
,
89
, pp.
959
964
.
29.
Sadhik Basha
,
J.
, and
Anand
,
R. B.
,
2010
, “
An Experimental Investigation in a Diesel Engine Using Carbon Nanotubes Blended Water–Diesel Emulsion
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
225
, pp.
279
288
.
30.
Kannan
,
G. R.
, and
Anand
,
R.
,
2011
, “
Experimental Investigation on Diesel Engine With Diestrol-Water Micro-Emulsions
,”
Energy
,
36
(
3
), pp.
1680
1687
.
31.
Debnath
,
B. K.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2014
, “
An Experimental Way of Assessing the Application Potential of Emulsified Palm Biodiesel Toward Alternative to Diesel
,”
ASME J. Eng. Gas Turbines Power
,
136
, p.
021401
.
32.
Namasivayam
,
A. M.
,
Korakianitis
,
T.
,
Crookes
,
R. J.
,
Bob-Manuel
,
K. D. H.
, and
Olsen
,
J.
,
2010
, “
Biodiesel, Emulsified Biodiesel and Dimethyl Ether as Pilot Fuels for Natural Gas Fuelled Engines
,”
Appl. Energy
,
87
(
3
), pp.
769
778
.
33.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2010
, “
Hydrogen Dual-Fuelling of Compression Ignition Engines With Emulsified Biodiesel as Pilot Fuel
,”
Int. J. Hydrogen Energy
,
35
, pp.
13328
13344
.
34.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2009
,
Diesel Transient Operation: Principles of Operation and Simulation Analysis
,
Springer Limited
,
London
, pp.
277
304
.
35.
AL-Najem
,
N. M.
, and
Diab
,
J. M.
,
1992
, “
Energy-Exergy Analysis of a Diesel Engine
,”
Heat Recovery Syst. CHP
,
12
(
6
), pp.
525
529
.
36.
Rakopoulos
,
C. D.
, and
Kyritsis
,
D. C.
,
2001
, “
Comparative Second-Law Analysis of Internal Combustion Engine Operation for Methane, Methanol, and Dodecane Fuels
,”
Energy
,
26
(
7
), pp.
705
722
.
37.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2004
, “
Availability Analysis of a Turbocharged Diesel Engine Operating Under Transient Load Conditions
,”
Energy
,
29
(
8
), pp.
1085
1104
.
38.
Parlak
,
A.
,
2005
, “
The Effect of Heat Transfer on Performance of the Diesel Cycle and Exergy of the Exhaust Gas Stream in a LHR Diesel Engine at the Optimum Injection Timing
,”
Energy Convers. Manage.
,
46
(
2
), pp.
167
179
.
39.
Parlak
,
A.
,
Yasar
,
H.
, and
Eldogan
,
O.
,
2005
, “
The Effect of Thermal Barrier Coating on a Turbo-Charged Diesel Engine Performance and Exergy Potential of the Exhaust Gas
,”
Energy Convers. Manage.
,
46
(
3
), pp.
489
499
.
40.
Giakoumis
,
E. G.
,
2007
, “
Cylinder Wall Insulation Effects on the First- and Second-Law Balances of a Turbocharged Diesel Engine Operating Under Transient Load Conditions
,”
Energy Convers. Manage.
,
48
(
11
), pp.
2925
2933
.
41.
Ghazikhani
,
M.
,
Feyz
,
M. E.
, and
Joharchi
,
A.
,
2010
, “
Experimental Investigation of the Exhaust Gas Recirculation Effects on Irreversibility and Brake Specific Fuel Consumption of Indirect Injection Diesel Engines
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1711
1718
.
42.
Zheng
,
J.
, and
Caton
,
J. A.
,
2012
, “
Second Law Analysis of a Low Temperature Combustion Diesel Engine: Effect of Injection Timing and Exhaust Gas Recirculation
,”
Energy
,
38
(
1
), pp.
78
84
.
43.
Ozkan
,
M.
,
Ozkan
,
D. B.
,
Ozener
,
O.
, and
Yılmaz
,
H.
,
2013
, “
Experimental Study on Energy and Exergy Analyses of a Diesel Engine Performed With Multiple Injection Strategies: Effect of Pre-Injection Timing
,”
Appl. Therm. Eng.
,
53
(
1
), pp.
21
30
.
44.
Ghazikhani
,
M.
,
Hatami
,
M.
,
Ganji
,
D. D.
,
Gorji-Bandpy
,
M.
,
Behravana
,
A.
, and
Shahi
,
G.
,
2014
, “
Exergy Recovery From the Exhaust Cooling in a DI Diesel Engine for BSFC Reduction Purposes
,”
Energy
,
65
, pp.
44
51
.
45.
Hatami
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2015
, “
Experimental and Thermodynamical Analyses of the Diesel Exhaust Vortex Generator Heat Exchanger for Optimizing Its Operating Condition
,”
Appl. Therm. Eng.
,
75
, pp.
580
591
.
46.
Debnath
,
B. K.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2013
, “
Thermodynamic Analysis of a Variable Compression Ratio Diesel Engine Running With Palm Oil Methyl Ester
,”
Energy Convers. Manage.
,
65
, pp.
147
154
.
47.
Debnath
,
B. K.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2014
, “
Theoretical Route Toward the Estimation of Second Law Potential of an Emulsified Palm Biodiesel Run Diesel Engine
,”
ASCE J. Energy Eng.
,
140
(3), p.
A4014007
.
48.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
1997
, “
Speed and Load Effects on the Availability Balances and Irreversibilities Production in a Multi-Cylinder Turbocharged Diesel Engine
,”
Appl. Therm. Eng.
,
17
(
3
), pp.
299
313
.
49.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
1997
, “
Simulation and Exergy Analysis of Transient Diesel-Engine Operation
,”
Energy
,
22
(
9
), pp.
875
885
.
50.
Abassi
,
A.
,
Khalilarya
,
S.
, and
Jafarmadar
,
S.
,
2010
, “
The Influence of the Inlet Charge Temperature on the Second Law Balance Under the Various Operating Engine Speeds in DI Diesel Engine
,”
Fuel
,
89
(
9
), pp.
2425
2432
.
51.
Azoumaha
,
Y.
,
Blin
,
J.
, and
Daho
,
T.
,
2009
, “
Exergy Efficiency Applied for the Performance Optimization of a Direct Injection Compression Ignition (CI) Engine Using Biofuels
,”
Renewable Energy
,
34
(
6
), pp.
1494
1500
.
52.
Caliskan
,
H.
,
Tat
,
M. E.
, and
Hepbasli
,
A.
,
2009
, “
Performance Assessment of an Internal Combustion Engine at Varying Dead (Reference) State Temperatures
,”
Appl. Therm. Eng.
,
29
(
16
), pp.
3431
3436
.
53.
Tat
,
M. E.
,
2011
, “
Cetane Number Effect on the Energetic and Exergetic Efficiency of a Diesel Engine Fuelled With Biodiesel
,”
Fuel Process. Technol.
,
92
(
7
), pp.
1311
1321
.
54.
Jena
,
J.
, and
Misra
,
R. D.
,
2014
, “
Effect of Fuel Oxygen on the Energetic and Exergetic Efficiency of a Compression Ignition Engine Fuelled Separately With Palm and Karanja Biodiesels
,”
Energy
,
68
, pp.
411
419
.
55.
Lopez
,
I.
,
Quintana
,
C. E.
,
Ruiz
,
J. J.
,
Cruz-Peragon
,
F.
, and
Dorado
,
M. P.
,
2014
, “
Effect of the Use of Olive–Pomace Oil Biodiesel/Diesel Fuel Blends in a Compression Ignition Engine: Preliminary Exergy Analysis
,”
Energy Convers. Manage.
,
85
, pp.
227
233
.
56.
Rakopoulos
,
C. D.
, and
Kyritsis
,
D. C.
,
2006
, “
Hydrogen Enrichment Effects on the Second Law Analysis of Natural and Landfill Gas Combustion in Engine Cylinders
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1384
1393
.
57.
Rakopoulos
,
C. D.
,
Scott
,
M. A.
,
Kyritsis
,
D. C.
, and
Giakoumis
,
E. G.
,
2008
, “
Availability Analysis of Hydrogen/Natural Gas Blends Combustion in Internal Combustion Engines
,”
Energy
,
33
(
2
), pp.
248
255
.
58.
Hosseinzadeh
,
A.
,
Saray
,
R. K.
, and
Mahmoudi
,
S. M. S.
,
2010
, “
Comparison of Thermal, Radical and Chemical Effects of EGR Gases Using Availability Analysis in Dual-Fuel Engines at Part Loads
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2321
2329
.
59.
Costa
,
Y. J. R. D.
,
Lima
,
A. G. B. D.
,
Filho
,
C. R. B.
, and
Liman
,
L. D. A.
,
2012
, “
Energetic and Exergetic Analyses of a Dual-Fuel Diesel Engine
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
4651
4660
.
60.
Chintala
,
V.
, and
Subramanian
,
K. A.
,
2014
, “
Assessment of Maximum Available Work of a Hydrogen Fuelled Compression Ignition Engine Using Exergy Analysis
,”
Energy
,
67
, pp.
162
175
.
61.
Jafarmadar
,
S.
,
2014
, “
Exergy Analysis of Hydrogen/Diesel Combustion in a Dual Fuel Engine Using Three-Dimensional Model
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9505
9514
.
62.
Morsy
,
M. H.
,
2015
, “
Assessment of a Direct Injection Diesel Engine Fumigated With Ethanol/Water Mixtures
,”
Energy Convers. Manage.
,
94
, pp.
406
414
.
63.
Sahoo
,
B. B.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2011
, “
Theoretical Performance Limits of a Syngas–Diesel Fuelled Compression Ignition Engine From Second Law Analysis
,”
Energy
,
36
(
2
), pp.
760
769
.
64.
Sahoo
,
B. B.
,
Saha
,
U. K.
, and
Sahoo
,
N.
,
2012
, “
Diagnosing the Effects of Pilot Fuel Quality on Exergy Terms in a Biogas Run Dual Fuel Diesel Engine
,”
Int. J. Exergy
,
10
(
1
), pp.
77
93
.
65.
Bora
,
B. J.
,
Debnath
,
B. K.
,
Gupta
,
N.
,
Sahoo
,
N.
, and
Saha
,
U. K.
,
2013
, “
Investigation on the Flow Behaviour of a Venturi Type Gas Mixer Designed for Dual Fuel Diesel Engines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
S3
), pp.
202
209
.
66.
Giakoumis
,
E. G.
,
2013
, “
A Statistical Investigation of Biodiesel Physical and Chemical Properties and Their Correlation With the Degree of Unsaturation
,”
Renewable Energy
,
50
, pp.
858
878
.
67.
Flynn
,
P. F.
,
Hoag
,
K. L.
,
Kamel
,
M. M.
, and
Primus
,
R. J.
,
1984
, “
A New Perspective on Diesel Engine Evaluation Based on Second Law Analysis
,”
SAE
Paper No. 840032.
68.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Power Plant Analysis
,
Butterworths
,
London
.
69.
Stepanov
,
V. S.
,
1995
, “
Chemical Energies and Exergies of Fuels
,”
Energy
,
20
(
3
), pp.
235
242
.
70.
Ebiana
,
A. B.
,
Savadekar
,
R. T.
, and
Patel
,
K. V.
,
2005
, “
Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and ‘Two Space’ Test Rigs
,”
AIAA
Paper No. 2005-5675.
71.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
264
.
72.
Bora
,
B. J.
, and
Saha
,
U. K.
, “
On the attainment of the optimum injection timing of pilot fuel of a dual fuel diesel engine run on biogas
,” Paper No. ESDA2014-20162, Proceeding of
ASME
12th Biennial Conference on Engineering Systems Design and Analysis, June 25–27, 2014, Copenhagen, Denmark.
You do not currently have access to this content.