Photovoltaic (PV) systems are considered as a support unit and eco-friendly energy source for the electric vehicles. If the surface of the electric vehicle is covered by PV cells, it is possible to store considerable amount of energy in the battery system. In this study, different maximum power point trackers (MPPT) with different maximum power point (MPP) tracking algorithms have been tested on a PV structure moving according to a predefined motion loop. Compatibility of each algorithm to moving systems, such as electric vehicles, is presented in a real experimental environment. As a result of these experiments, positive factors in each algorithm have been defined and a new MPP tracking algorithm convenient for moving vehicle has been proposed. The proposed MPPT algorithm shows a better performance than other MPPT algorithms under fast varying radiations. However, proposed algorithm brings slightly higher costs compared to usage of other MPPT algorithms since it requires the measurement of solar irradiance. The developed algorithm is described in detail and comparative analysis and performance evaluation with other algorithms are presented.

References

References
1.
Malikopoulos
,
A. A.
,
2013
, “
Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041201
.
2.
Boretti
,
A. A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
.
3.
Himelic
,
J.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicle for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031001
.
4.
Tse
,
C. G.
,
Maples
,
B. A.
, and
Kreith
,
F.
,
2015
, “
The Use of Plug-In Hybrid Electric Vehicle for Peak Shaving
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011201
.
5.
Radu
,
R.
,
Micheli
,
D.
,
Alessandrini
,
S.
,
Casula
,
I.
, and
Radu
,
B.
,
2000
, “
Modeling and Performance Analysis of an Integrated System: Variable Speed Operated Internal Combustion Engine Combined Heat and Power Unit-Photovoltaic Array
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032001
.
6.
Takashima
,
T.
,
Tanaka
,
M.
,
Amano
,
M.
, and
Ando
,
Y.
,
2000
, “
Maximum Output Control of Photovoltaic (PV) Array
,”
35th International Intersociety Energy Conversion Engineering Conference and Exhibition
,
Las Vegas, NV
, July 24–28, pp.
380
383
.
7.
Jiang
,
J. A.
,
Su
,
Y. L.
,
Shieh
,
J. C.
,
Kuo
,
K. C.
,
Lin
,
T. S.
,
Lin
,
T. T.
,
Fang
,
W.
,
Chou
,
J. J.
, and
Wang
,
J. C.
,
2014
, “
On Application of a New Hybrid Maximum Power Point Tracking (MPPT) Based Photovoltaic System to the Closed Plant Factory
,”
Appl. Energy
,
124
(1), pp.
309
324
.
8.
Ishaque
,
K.
,
Salam
,
Z.
, and
Lauss
,
G.
,
2014
, “
The Performance of Perturb and Observe and Incremental Conductance Maximum Power Point Tracking Method Under Dynamic Weather Conditions
,”
Appl. Energy
,
119
(1), pp.
228
236
.
9.
Salas
,
V.
,
Olias
,
E.
,
Barrado
,
A.
, and
Lazaro
,
A.
,
2006
, “
Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic System
,”
Sol. Energy Mater. Sol. Cells
,
90
(
11
), pp.
1555
1578
.
10.
Hussein
,
K. H.
,
Muta
,
I.
,
Hoshino
,
T.
, and
Osakada
,
M.
,
1995
, “
Maximum Photovoltaic Power Tracking: An Algorithm for Rapidly Changing Atmospheric Conditions
,”
IEE Proc. Gener., Transm. Distrib.
,
142
(
1
), pp.
59
64
.
11.
Hohm
,
D. P.
, and
Ropp
,
M. E.
,
2003
, “
Comparative Study of Maximum Power Point Tracking Algorithm
,”
Prog. Photovoltaic Res. Appl.
,
11
(
1
), pp.
47
62
.
12.
Berrera
,
M.
,
Dolara
,
A.
,
Faranda
,
R.
, and
Leva
,
S.
,
2009
, “
Experimental Test of Seven Widely-Adopted MPPT Algorithms
,”
IEEE Bucharest Power Tech Conference
,
Bucharest
,
Romania
, June 28–July 2.
13.
Hua
,
C.
, and
Shen
,
C.
,
1998
, “
Comparative Study of Peak Power Tracking Techniques for Solar Storage System
,”
IEEE Applied Power Electronics Conference an Exposition
(
APEC '98
),
Anaheim, CA
, Feb. 15–19, pp.
679
685
.
14.
Abdelsalam
,
A. K.
,
Masoud
,
A. M.
,
Ahmed
,
S.
, and
Enjeti
,
P. N.
,
2011
, “
High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids
,”
IEEE Trans. Power Electron.
,
26
(
4
), pp.
1010
1021
.
15.
Piegari
,
L.
, and
Rizzo
,
R.
,
2010
, “
Adaptive Perturb and Observe Algorithm for Photovoltaic Maximum Power Point Tracking
,”
IET Renewable Power Gener.
,
4
(
4
), pp.
317
328
.
16.
Mutoh
,
N.
, and
Ohno
,
T.
,
2006
, “
A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems
,”
IEEE Trans. Ind. Electron.
,
53
(
4
), pp.
1055
1065
.
17.
Pandey
,
A.
,
Dasgupta
,
N.
, and
Mukerjee
,
A. K.
,
2008
, “
High-Performance Algorithm for Drift Avoidance and Fast Tracking in Solar MPPT System
,”
IEEE Trans. Energy Convers.
,
23
(
2
), pp.
681
689
.
18.
Koa
,
S. H.
, and
Chao
,
R. M.
,
2012
, “
Photovoltaic Dynamic MPPT on a Moving Vehicle
,”
Sol. Energy
,
86
(
6
), pp.
1750
1760
.
19.
Haseo
,
Y.
, and
Fujisawa
,
T.
,
2008
, “
Evaluation on Tracking Capability of MPPT for Running Car
,”
International Conference on Control
,
Automation and System
,
Seoul, Korea
, pp.
2933
2936
.
20.
Nakir
,
I.
,
Durusu
,
A.
,
Ugur
,
E.
, and
Tanrioven
,
M.
,
2012
, “
Performance Assessment of MPPT Algorithms for Vehicle Integrated Solar Energy Systems
,”
IEEE International Energy Conference and Exhibition
,
Florence, Italy
, pp.
1034
1038
.
21.
Durusu
,
A.
,
Nakir
,
I.
,
Ajder
,
A.
,
Ayaz
,
R.
,
Akca
,
H.
, and
Tanrioven
,
M.
,
2014
, “
Performance Comparison of Widely-Used Maximum Power Point Tracker Algorithms Under Real Environmental Conditions
,”
Adv. Electr. Comput. Eng.
,
14
(
3
), pp.
89
94
.
22.
Andrejasic
,
T.
,
Jankovec
,
M.
, and
Topic
,
M.
,
2011
, “
Comparison of Direct Maximum Power Point Tracking Algorithms Using EN 50530 Dynamic Test Procedure
,”
IET Renewable Power Gener.
,
5
(
4
), pp.
281
286
.
23.
Kish
,
G. J.
,
Lee
,
J. J.
, and
Lehn
,
P. W.
,
2012
, “
Modeling and Control of Photovoltaic Panel Utilizing the Incremental Conductance Method for Maximum Power Point Tracking
,”
IET Renewable Power Gener.
,
6
(
4
), pp.
259
266
.
24.
Brito
,
M. A. G.
,
Galotto
,
L.
,
Melo
,
L. P.
,
Sampaio
,
G. A.
, and
Canesin
,
C. A.
,
2013
, “
Evaluation of the Main MPPT Techniques for Photovoltaic Application
,”
IEEE Trans. Ind. Electron.
,
60
(
3
), pp.
1157
1167
.
25.
Nakir
,
I.
,
2012
, “
Improving Efficiency of Maximum Power Point Tracker for Vehicle Photovoltaic by Appropriate Algorithm
,” Ph.D. thesis, Yildiz Technical University, Istanbul, Turkey.
26.
Xiao
,
W.
, and
Dunford
,
W. G.
,
2004
, “
A Modified Adaptive Hill Climbing MPPT Method for Photovoltaic Power Systems
,”
IEEE 35th Annual Power Electronics Specialist Conference
,
Aachen, Germany
, pp.
1957
1963
.
27.
Chiang
,
M. L.
,
Hua
,
C. C.
, and
Lin
,
J. R.
,
2002
, “
Direct Power Control for Distributed PV Power System
,”
Power Conversion Conference
,
Osaka, Japan
, pp.
311
315
.
28.
Wolf
,
P. J.
, and
Tang
,
L.
,
2005
, “
A Single Cell Maximum Power Point Tracking Converter Without a Current Sensor for High Performance Vehicle Solar Arrays
,”
IEEE 36th Annual Power Electronics Specialist Conference
,
Recife, Brazil
, pp.
165
171
.
This content is only available via PDF.
You do not currently have access to this content.