Adsorptive storage of CO2 in a fixed bed is studied numerically. The simulation of an adsorption process of CO2 on a fixed bed has been carried out to evaluate the capacity of metal-organic framework novel materials (MOF-5 also known as IRMOF1) for CO2 storage with varying feed gas pressure up to 50 bar and ambient temperature. We also have presented similar studies for activated carbon bed. The adsorption model has been validated by testing it against experimental data for adsorption storage characteristics of hydrogen on activated carbon. The mathematical model used to carry out the numerical simulations is a one-dimensional transient model accounting for mass, momentum, species, and energy transport including mass transfer and empirically based adsorption models. The developed model has been coded in matlab to carry out the presented simulations.

References

References
1.
The Guardian.com
,
2014
, “
Five Basic Antarctic Facts for Climate Change Skeptics
,” antarctic-ship-stranding-delights-climate-change-sceptics @ www.theguardian.com
2.
2014
, “
U.S. Environmental Protection Agency (EPA)
,” index @ www.epa.gov
3.
D'Alessandro
,
D. M.
, and
McDonald
,
T.
,
2011
, “
Toward Carbon Dioxide Capture Using Nanoporous Materials
,”
Pure Appl. Chem.
,
83
(
1
), pp.
57
66
.
4.
GCEP
,
2005
, “
An Assessment of Carbon Capture Technology and Research Opportunities
,”
Global Climate and Energy Project
, Stanford University, Stanford, CA.
5.
Kothandaraman
,
A.
,
Nord
,
L.
,
Bolland
,
O.
,
Herzog
,
H. J.
, and
McRae
,
G. J.
,
2009
, “Comparison of Solvents for Post-Combustion Capture of CO2 by Chemical Absorption,”
Energy Procedia
,
1
(1), pp. 1373–1380.
6.
Mori
,
Y.
,
Masutani
,
S. M.
,
Nihous
,
G. C.
, and
Vega
,
L. A.
,
1992
, “
Pre-Combustion Removal of Carbon Dioxide From Natural Gas Power Plants and the Transition to Hydrogen Energy Systems
,”
ASME J. Energy Res. Technol.
,
114
(
3
), pp.
221
226
.
7.
Sanusi
,
Y. S.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M.
,
2015
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emissions of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Res. Technol.
,
137
(3), p.
032203
.
8.
Mokheimer
,
E. M. A.
,
Hussain
,
M. I.
,
Ahmed
,
S.
,
Habib
,
M. A.
, and
Al-Qutub
,
A. A.
,
2015
, “
On the Modelling of Steam Methane Reforming
,”
ASME J. Energy Res. Technol.
,
137
(1), p.
012001
.
9.
Alzahrani
,
F. M.
,
Sanusi
,
Y. S.
,
Vogiatzaki
,
K.
,
Ghomiem
,
A. F.
,
Habib
,
M. A.
, and
Mokheimer
,
E. M.
,
2015
, “
Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms
,”
ASME J. Energy Res. Technol.
,
137
(
4
), p.
042201
.
10.
Habib
,
M. A.
,
Ahmed
,
P.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Alam
,
Z.
,
Horn
,
Y.
, and
Ghoniem
,
A. F.
,
2015
, “
Experimental and Numerical Investigation of La2NiO4 Membranes for Oxygen Separation: Geometry Optimization and Model Validation
,”
ASME J. Energy Res. Technol.
,
137
(
3
), p.
031102
.
11.
Ben-Mansour
,
R.
,
Ahmed
,
P.
, and
Habib
,
M. A.
,
2015
, “
Simulation of Oxy-Fuel Combustion of Heavy Oil Fuel in a Model Furnace
,”
ASME J. Energy Res. Technol.
,
137
(
3
), p.
032206
.
12.
E. U. Press
,
2008
, “
Environmental Impact of Aviation
,” Wikipedia, en.wikipedia.org/wiki/Environmental_impact_of_aviation
13.
Li
,
J.-R.
,
Ma
,
Y.
,
McCarthy
,
M. C.
,
Sculley
,
J.
,
Yu
,
J.
,
Jeong
,
H.-K.
,
Balbuena
,
P. B.
, and
Zhou
,
H.-C.
,
2011
, “
Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks
,”
Coord. Chem. Rev.
,
255
(
15–16
), pp.
1791
1823
.
14.
Li
,
J.-R.
,
Sculley
,
J.
, and
Zhou
,
H.-C.
,
2012
, “
Metal-Organic Frameworks for Separations
,”
Chem. Rev.
,
112
(
2
), pp.
869
932
.
15.
CCDC,
2014
, SupportSolution, Cambridge Crystallographic Data Centre, Cambridge, UK, www.ccdc.cam.ac.uk
16.
Kuppler
,
R. J.
,
Timmons
,
D. J.
,
Fang
,
Q.-R.
,
Li
,
J.-R.
,
Makal
,
T. A.
,
Young
,
M. D.
,
Yuan
,
D.
,
Zhao
,
D.
,
Zhuang
,
W.
, and
Zhou
,
H.-C.
,
2009
, “
Potential Applications of Metal-Organic Frameworks
,”
Coord. Chem. Rev.
,
253
(
23–24
), pp.
3042
3066
.
17.
Zhao
,
D.
,
Yuan
,
D.
,
Yakovenko
,
A.
, and
Zhou
,
H.-C.
,
2010
, “
A NbO-Type Metal-Organic Framework Derived From a Polyyne-Coupled Di-Isophthalate Linker Formed In Situ
,”
Chem. Commun.
,
46
(
23
), pp.
4196
4198
.
18.
Xie
,
L.-H.
, and
Suh
,
M. P.
,
2011
, “
Flexible Metal-Organic Framework With Hydrophobic Pores
,”
Chemistry
,
17
(
49
), pp.
13653
13656
.
19.
Yuan
,
D.
,
Zhao
,
D.
, and
Zhou
,
H.-C.
,
2011
, “
Pressure-Responsive Curvature Change of a ‘Rigid’ Geodesic Ligand in a (3,24)-Connected Mesoporous Metal-Organic Framework
,”
Inorg. Chem.
,
50
(
21
), pp.
10528
10530
.
20.
Coudert
,
F.-X.
,
2010
, “
The Osmotic Framework Adsorbed Solution Theory: Predicting Mixture Coadsorption in Flexible Nanoporous Materials
,”
Phys. Chem. Chem. Phys.
,
12
(
36
), pp.
10904
10913
.
21.
Yuan
,
D.
,
Getman
,
R. B.
,
Wei
,
Z.
,
Snurr
,
R. Q.
, and
Zhou
,
H.-C.
,
2012
, “
Stepwise Adsorption in a Mesoporous Metal-Organic Framework: Experimental and Computational Analysis
,”
Chem. Commun.
,
48
(
27
), pp.
3297
3299
.
22.
Zhao
,
D.
,
Yuan
,
D.
,
Krishna
,
R.
,
van Baten
,
J. M.
, and
Zhou
,
H.-C.
,
2010
, “
Thermosensitive Gating Effect and Selective Gas Adsorption in a Porous Coordination Nanocage
,”
Chem. Commun.
,
46
(
39
), pp.
7352
7354
.
23.
Coudert
,
F.-X.
,
Mellot-Draznieks
,
C.
,
Fuchs
,
A. H.
, and
Boutin
,
A.
,
2009
, “
Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal-Organic Frameworks
,”
J. Am. Chem. Soc. Commun.
,
131
(32), pp.
11329
11331
.
24.
Plaines
,
D.
,
Levan
,
D.
,
Brandani
,
S.
,
Snurr
,
R.
,
Matzger
,
A.
, and
Arbor
,
A.
,
2010
, “
Carbon Dioxide Removal From Flue Gas Using Microporous Metal Organic Frameworks
,” U.S. Department of the Environment, Washington, DC,
DOE
Award No. DE-FC26-07NT43092.
25.
Britt
,
D.
,
Tranchemontagne
,
D.
, and
Yaghi
,
O. M.
,
2008
, “
Metal-Organic Frameworks With High Capacity and Selectivity for Harmful Gases
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
33
), pp.
11623
11627
.
26.
Tranchemontagne
,
D. J.
,
Hunt
,
J. R.
, and
Yaghi
,
O. M.
,
2008
, “
Room Temperature Synthesis of Metal-Organic Frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0
,”
Tetrahedron
,
64
(
36
), pp.
8553
8557
.
27.
Millward
,
A. R.
, and
Yaghi
,
O. M.
,
2005
, “
Metal-Organic Frameworks With Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature
,”
J. Am. Chem. Soc.
,
127
(
51
), pp.
17998
17999
.
28.
Zhao
,
Z.
,
Li
,
Z.
, and
Lin
,
Y. S.
,
2009
, “
Adsorption and Diffusion of Carbon Dioxide on Metal-Organic Framework (MOF-5)
,”
Ind. Eng. Chem. Res.
,
48
(
22
), pp.
10015
10020
.
29.
Saha
,
D.
, and
Bao
,
Z.
,
2010
, “
On MOF-5, MOF-177, and Zeolite 5A
,”
Environ. Sci. Technol.
,
44
(
5
), pp.
1820
1826
.
30.
Jung
,
J. Y.
,
Karadas
,
F.
,
Zulfiqar
,
S.
,
Deniz
,
E.
,
Aparicio
,
S.
,
Atilhan
,
M.
,
Yavuz
,
C. T.
, and
Han
,
S. M.
,
2013
, “
Limitations and High Pressure Behavior of MOF-5 for CO2 Capture
,”
Phys. Chem. Chem. Phys.
,
15
(
34
), pp.
14319
14327
.
31.
Lu
,
C.-M.
,
Liu
,
J.
,
Xiao
,
K.
, and
Harris
,
A. T.
,
2010
, “
Microwave Enhanced Synthesis of MOF-5 and Its CO2 Capture Ability at Moderate Temperatures Across Multiple Capture and Release Cycles
,”
Chem. Eng. J.
,
156
(
2
), pp.
465
470
.
32.
Ahn
,
H.
, and
Brandani
,
S.
,
2005
, “
Dynamics of Carbon Dioxide Breakthrough in a Carbon Monolith Over a Wide Concentration Range
,”
Adsorption
,
11
(S
1
), pp.
473
477
.
33.
Hermosilla-Lara
,
G.
,
Momen
,
G.
,
Marty
,
P.
,
Leneindre
,
B.
, and
Hassouni
,
K.
,
2007
, “
Hydrogen Storage by Adsorption on Activated Carbon: Investigation of the Thermal Effects During the Charging Process
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1542
1553
.
34.
Xiao
,
J.
,
Hu
,
M.
,
Bénard
,
P.
, and
Chahine
,
R.
,
2013
, “
Simulation of Hydrogen Storage Tank Packed With Metal-Organic Framework
,”
Int. J. Hydrogen Energy
,
38
(
29
), pp.
13000
13010
.
35.
Xiao
,
J.
,
Tong
,
L.
,
Deng
,
C.
,
Bénard
,
P.
, and
Chahine
,
R.
,
2010
, “
Simulation of Heat and Mass Transfer in Activated Carbon Tank for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
35
(
15
), pp.
8106
8116
.
36.
Liu
,
D.
,
Purewal
,
J. J.
,
Yang
,
J.
,
Sudik
,
A.
,
Maurer
,
S.
,
Mueller
,
U.
,
Ni
,
J.
, and
Siegel
,
D. J.
,
2012
, “
MOF-5 Composites Exhibiting Improved Thermal Conductivity
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6109
6117
.
37.
Mu
,
B.
, and
Walton
,
K. S.
,
2011
, “
Thermal Analysis and Heat Capacity Study of Metal à Organic Frameworks
,”
J. Phys. Chem.
,
115
(
46
), pp.
22748
22754
.
38.
Dantas
,
T. L. P.
,
Luna
,
F. M. T.
,
Silva
, I
. J.
,
de Azevedo
,
D. C. S.
,
Grande
,
C. A.
,
Rodrigues
,
A. E.
, and
Moreira
,
R. F. P. M.
,
2011
, “
Carbon Dioxide–Nitrogen Separation Through Adsorption on Activated Carbon in a Fixed Bed
,”
Chem. Eng. J.
,
169
(
1–3
), pp.
11
19
.
You do not currently have access to this content.