This study presents energy and exergy analyses of aquifer thermal energy storage (ATES) integrated with a building heating and cooling system. In this regard, a typical bidirectional ATES integrated with a heat pump (HP) is considered in the provision of required heating and cooling demands. The different ATES components and the operating principle are described. Furthermore, energy and exergy models are formulated for three subprocesses: charging, storing, and discharging, to track changes in energy and exergy quantities with discharging time. The energetic and exergetic efficiencies are then evaluated for both operating cases. The limitation of the use of energy efficiency for ATES performance assessment is elaborated. In contrast, the importance of exergy analysis as a practical and temperature sensitive tool is considered as a quantitative and a qualitative measure of the ATES performance. Additionally, a comparison between energetic and exergetic efficiencies is presented where energy efficiency involves some ambiguities, especially when energy recovered from ATES is at a low temperature rather than at an ambient temperature.

References

References
1.
Dincer
,
I.
,
2002
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy Build.
,
34
(
4
), pp.
377
388
.
2.
Dincer
,
I.
,
2013
, “
Thermal Energy Storage
,”
Reference Module in Earth Systems and Environmental Sciences
,
Elsevier
,
Amsterdam
.
3.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2001
, “
Energetic, Environmental and Economic Aspects of Thermal Energy Storage Systems for Cooling Capacity
,”
Appl. Therm. Eng.
,
21
(
11
), pp.
1105
1117
.
4.
Rosen
,
M. A.
,
Dincer
,
I.
, and
Pedinelli
,
N.
,
2000
, “
Thermodynamic Performance of Ice Thermal Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
205
211
.
5.
Zubair
,
S. M.
, and
Al-Naglah
,
M. A.
,
1999
, “
Thermoeconomic Optimization of a Sensible-Heat Thermal-Energy-Storage System: A Complete Storage Cycle
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp.
286
294
.
6.
Taylor
,
M. J.
,
Krane
,
R. J.
, and
Parsons
,
J. R.
,
1991
, “
Second Law Optimization of a Sensible Heat Thermal Energy Storage System With a Distributed Storage Element—Part 1: Development of the Analytical Model
,”
ASME J. Energy Resour. Technol.
,
113
(
1
), pp.
20
26
.
7.
Taylor
,
M. J.
,
Krane
,
R. J.
, and
Parsons
,
J. R.
,
1991
, “
Second Law Optimization of a Sensible Heat Thermal Energy Storage System With a Distributed Storage Element—Part II: Presentation and Interpretation of Results
,”
ASME J. Energy Resour. Technol.
,
113
(
1
), pp.
27
32
.
8.
Krane
,
R. J.
, and
Krane
,
M. J. M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part I: Development of the Basic Analytical Model
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
197
203
.
9.
Krane
,
R. J.
, and
Krane
,
M. J. M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part II: Completion of the Analytical Model, Presentation and Interpretation of the Results
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
204
208
.
10.
Vanhoudt
,
D.
,
Desmedt
,
J.
,
Van Bael
,
J.
,
Robeyn
,
N.
, and
Hoes
,
H.
,
2011
, “
An Aquifer Thermal Storage System in a Belgian Hospital: Long-Term Experimental Evaluation of Energy and Cost Savings
,”
Energy Build.
,
43
(
12
), pp.
3657
3665
.
11.
Kranz
,
S.
, and
Frick
,
S.
,
2013
, “
Efficient Cooling Energy Supply With Aquifer Thermal Energy Storages
,”
Appl. Energy
,
109
, pp.
321
327
.
12.
Andersson
,
O.
,
2007
, “
ATES for District Cooling in Stockholm
,”
Thermal Energy Storage for Sustainable Energy Consumption
,
Springer
,
Dordrecht
, pp.
239
243
.
13.
Andersson
,
O.
,
2007
, “
Bo 01 ATES System for Heating and Cooling in Malmö
,”
Thermal Energy Storage for Sustainable Energy Consumption
,
Springer
,
Dordrecht
, pp.
235
238
.
14.
Bridger
,
D. W.
, and
Allen
,
D. M.
,
2005
, “
Designing Aquifer Thermal Energy Storage Systems
,”
ASHRAE J.
,
47
(
9
), pp.
S32
S37
.
15.
Bloemendal
,
M.
,
Olsthoorn
,
T.
, and
Boons
,
F.
,
2014
, “
How to Achieve Optimal and Sustainable Use of the Subsurface for Aquifer Thermal Energy Storage
,”
Energy Policy
,
66
, pp.
104
114
.
16.
Kim
,
J.
,
Lee
,
Y.
,
Yoon
,
W. S.
,
Jeon
,
J. S.
,
Koo
,
M.-H.
, and
Keehm
,
Y.
,
2010
, “
Numerical Modeling of Aquifer Thermal Energy Storage System
,”
Energy
,
35
(
12
), pp.
4955
4965
.
17.
Dickinson
,
J.
,
Buik
,
N.
,
Matthews
,
M.
, and
Snijders
,
A.
,
2009
, “
Aquifer Thermal Energy Storage: Theoretical and Operational Analysis
,”
Geotechnique
,
59
(
3
), pp.
249
260
.
18.
Caliskan
,
H.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2012
, “
Thermodynamic Analyses and Assessments of Various Thermal Energy Storage Systems for Buildings
,”
Energy Convers. Manage.
,
62
, pp.
109
122
.
19.
Rosen
,
M. A.
,
1999
, “
Second-Law Analysis of Aquifer Thermal Energy Storage Systems
,”
Energy
,
24
(
2
), pp.
167
182
.
20.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Exergy Analysis of Thermal Energy Storage Systems
,”
Exergy
, 2nd ed.,
I.
Dincer
, and
M. A.
Rosen
, eds.,
Elsevier
,
Oxford, UK
, pp.
133
166
.
21.
Dincer
,
I.
, and
Rosen
,
M.
,
2002
,
Thermal Energy Storage: Systems and Applications
,
Wiley
,
New York
.
22.
Government of Canada
,
2014
, “
Climate
,” Environment Canada, Fredericton, NB, Canada, http://climate.weather.gc.ca/
23.
Sykes
,
J.
,
Lantz
,
R.
,
Pahwa
,
S.
, and
Ward
,
D.
,
1982
, “
Numerical Simulation of Thermal Energy Storage Experiment Conducted by Auburn University
,”
Groundwater
,
20
(
5
), pp.
569
576
.
You do not currently have access to this content.