Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.

References

References
1.
Graboski
,
M. S.
, and
McCormick
,
R. L.
,
1998
, “
Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines
,”
Prog. Energy Combust. Sci.
,
24
(2), pp.
125
164
.
2.
McCormick
,
R. L.
,
Williams
,
A.
,
Ireland
,
J.
,
Brimhall
,
M.
, and
Hayes
,
R. R.
,
2006
, “
Effects of Biodiesel Blends on Vehicle Emissions
,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/MP–540-40554.
3.
Giakoumis
,
E. G.
,
Rakopoulos
,
C. D.
,
Dimaratos
,
A. M.
, and
Rakopoulos
,
D. C.
,
2012
, “
Exhaust Emissions of Diesel Engines Operating Under Transient Conditions With Biodiesel Fuel Blends
,”
Prog. Energy Combust. Sci.
,
38
(
5
), pp.
691
715
.
4.
Lapuerta
,
M.
,
Armas
,
O.
, and
Rodríguez-Fernández
,
J.
,
2008
, “
Effect of Biodiesel Fuels on Diesel Engine Emissions
,”
Prog. Energy Combust. Sci.
,
34
(
2
), pp.
198
223
.
5.
Knothe
,
G.
,
2010
, “
Biodiesel and Renewable Diesel: A Comparison
,”
Prog. Energy Combust. Sci.
,
36
(
3
), pp.
364
373
.
6.
Feng
,
Q.
,
Jalali
,
A.
,
Fincham
,
A. M.
,
Wang
,
Y. L.
,
Tsotsis
,
T. T.
, and
Egolfopoulos
,
F. N.
,
2012
, “
Soot Formation in Flames of Model Biodiesel Fuels
,”
Combust. Flame
,
159
(
5
), pp.
1876
1893
.
7.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
8.
Gill
,
S. S.
,
Tsolakis
,
A.
,
Dearn
,
K. D.
, and
Rodríguez-Fernández
,
J.
,
2011
, “
Combustion Characteristics and Emissions of Fischer-Tropsch Diesel Fuels in IC Engines
,”
Prog. Energy Combust. Sci.
,
37
(4), pp.
503
523
.
9.
Murugesan
,
A.
,
Umarani
,
C.
,
Chinnusamy
,
T.
,
Krishnan
,
M.
,
Subramanian
,
R.
, and
Neduzchezhain
,
N.
,
2009
, “
Production and Analysis of Bio-Diesel From Non-Edible Oils—A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
4
), pp.
825
834
.
10.
Tiwari
,
A. K.
,
Kumar
,
A.
, and
Raheman
,
H.
,
2007
, “
Biodiesel Production From Jatropha Oil (Jatropha Curcas) With High Free Fatty Acids: An Optimized Process
,”
Biomass Bioenergy
,
31
(
8
), pp.
569
575
.
11.
Banković-Ilić
, I
. B.
,
Stamenković
,
O. S.
, and
Veljković
,
V. B.
,
2012
, “
Biodiesel Production From Non-Edible Plant Oils
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3621
3747
.
12.
Achten
,
W. M. J.
,
Verchot
,
L.
,
Franken
,
Y. J.
,
Mathijs
,
E.
,
Singh
,
V. P.
,
Aerts
,
R.
, and
Muys
,
B.
,
2008
, “
Jatropha Bio-Diesel Production and Use
,”
Biomass Bioenergy
,
32
(12), pp.
1063
1084
.
13.
Nabi
,
M. N.
,
Hoque
,
S. M. N.
, and
Akhter
,
M. S.
,
2009
, “
Karanja (Pongamia Pinnata) Biodiesel Production in Bangladesh, Characterization of Karanja Biodiesel and Its Effect on Diesel Emissions
,”
Fuel Process. Technol.
,
90
(
9
), pp.
1080
1086
.
14.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2009
, “
Performance, Emission and Combustion Characteristics of Jatropha Oil Blends in a Direct Injection CI Engine
,”
SAE
Technical Paper No. 2009-01-0947.
15.
Sahoo
,
P. K.
, and
Das
,
L. M.
,
2009
, “
Combustion Analysis of Jatropha, Karanja and Polanga Based Biodiesel as Fuel in a Diesel Engine
,”
Fuel
,
88
(6), pp.
994
999
.
16.
Ganapathy
,
T.
,
Gakkhar
,
R. P.
, and
Murugesan
,
K.
,
2011
, “
Influence of Injection Timing on Performance, Combustion and Emission Characteristics of Jatropha Biodiesel Engine
,”
Appl. Energy
,
88
(12), pp.
4376
4386
.
17.
Dhar
,
A.
, and
Agarwal
,
A. K.
,
2014
, “
Performance, Emissions and Combustion Characteristics of Karanja Biodiesel in a Transportation Engine
,”
Fuel
,
119
(
3
), pp.
70
80
.
18.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(2), p.
022203
.
19.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2105
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(1), p.
011101
.
20.
McCormick
,
R. L.
, and
Westbrook
,
S. R.
,
2009
, “
Storage Stability of Biodiesel and Biodiesel Blends
,”
Energy Fuels
,
128
(
1
), pp.
690
698
.
21.
Monyem
,
A.
, and
Van Gerpen
,
J. H.
,
2001
, “
The Effect of Biodiesel Oxidation on Engine Performance and Emissions
,”
Biomass Bioenergy
,
20
(
4
), pp.
317
325
.
22.
Dunn
,
R. O.
,
2002
, “
Effect of Oxidation Under Accelerated Conditions on Fuel Properties of Methyl Soyate (Biodiesel)
,”
J. Am. Oil Chem. Soc.
,
79
(
9
), pp.
915
920
.
23.
Ramírez
,
A. I.
,
Aggarwal
,
S. K.
,
Som
,
S.
,
Rutter
,
T. P.
, and
Longman
,
D. E.
,
2014
, “
Effects of Blending a Heavy Alcohol (C20H40O With Diesel in a Heavy-Duty Compression-Ignition Engine
,”
Fuel
,
136
, pp.
89
102
.
24.
Ramirez
,
A.
,
Som
,
S.
,
Aggarwal
,
S. K.
,
Kastengren
,
A.
,
El-Hannouny
,
E.
,
Longman
,
D.
, and
Powell
,
C.
,
2009
, “
Quantitative X-Ray Measurements of High-Pressure Fuel Sprays From a Production Heavy Duty Diesel Injector
,”
Exp. Fluids
,
47
(
1
), pp.
119
134
.
25.
Longman
,
D.
,
2006
,
In-Cylinder Injection of Oxygen-Enriched Air to Educe Diesel Engine Exhaust Emissions
,” M.S. thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL.
26.
AVL, 2015, “Instrumentation and Test Systems,” AVL LIST GmbH. Graz. Austria, https://www.avl.com/its
27.
Ciatti
,
S. A.
,
Miers
,
S. A.
, and
Ng
,
H. K.
,
2005
, “
Influence of EGR on Soot/NOx Production in a Light-Duty Diesel Engine
,”
ASME
Paper No. ICEF2005-1327.
28.
Som
,
S.
,
Longman
,
D. E.
,
Ramírez
,
A. I.
, and
Aggarwal
,
S. K.
,
2010
, “
A Comparison of Injector Flow and Spray Characteristics of Biodiesel With Petrodiesel
,”
Fuel
,
89
(12), pp.
4014
4024
.
29.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M. A.
,
2003
, “
Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.
30.
Agarwal
,
A. K.
,
Srivastava
,
D. K.
,
Dhar
,
A.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Timing and Pressure on Combustion, Emissions and Performance Characteristics of a Single Cylinder Diesel Engine
,”
Fuel
,
111
, pp.
374
383
.
31.
Agarwal
,
A. K.
,
Srivastava
,
D. K.
,
Dhar
,
A.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Timing and Pressure on Combustion, Emissions and Performance Characteristics of a Single Cylinder Diesel Engine
,”
Fuel
,
111
, pp.
374
383
.
32.
Schönborn
,
A.
,
Ladommatos
,
N.
,
Williams
,
J.
,
Allen
,
R.
, and
Rogerson
,
J.
,
2009
, “
The Influence of Molecular Structure of Fatty Acid Monoalkyl Esters on Diesel Combustion
,”
Combust. Flame
,
156
(7), pp.
1396
1412
.
33.
Benjumea
,
P.
,
Agudelo
,
J. R.
, and
Agudelo
,
A. F.
,
2011
, “
Effect of the Degree of Unsaturation of Biodiesel Fuels on Engine Performance
,”
Combust. Charact. Emiss., Energy Fuel
,
25
(1), pp.
77
85
.
34.
Garner
,
S.
, and
Brezinsky
,
K.
,
2011
, “
Biologically Derived Diesel Fuel and NO Formation: An Experimental and Chemical Kinetic Study, Part 1
,”
Combust. Flame.
,
158
(12), pp.
2289
2301
.
35.
Garner
,
S.
,
Dubois
,
T.
,
Togbe
,
C.
,
Chaumeix
,
N.
,
Dagaut
,
P.
, and
Brezinsky
,
K.
,
2011
, “
Biologically Derived Diesel Fuel and NO Formation, Part 2: Model Development and Extended Validation
,”
Combust. Flame
,
158
(12), pp.
2302
2313
.
36.
Han
,
X.
,
Aggarwal
,
S. K.
, and
Brezinsky
,
K.
,
2013
, “
On the Effect of Unsaturated Bond on NOx and PAH Formation in n-Heptane and 1-Heptene Triple Flames
,”
Energy Fuel
,
27
(
1
), pp.
537
548
.
37.
Fu
,
X.
,
Han
,
X.
,
Brezinsky
,
K.
, and
Aggarwal
,
S. K.
,
2013
, “
Effect of Fuel Molecular Structure and Premixing on Soot Emissions From n-Heptane and 1-Heptene Flames
,”
Energy Fuel
,
27
(
10
), pp.
6262
6272
.
38.
Mistri
,
G. K.
,
2015
, “
Performance and Emission Investigation of Jatropha and Karanja Biodiesels an a Single-Cylinder Compression-Ignition Engine With Optical Imaging
,” M.S. thesis, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL.
39.
Desmira
,
N.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2014
, “
Hydroxyl and Nitric Oxide Distribution in Waste Rice Bran Biofuel-Octanol Flames
,”
ASME J. Energy Resour. Technol.
,
136
(1), p.
014501
.
40.
Ban-Weiss
,
G. A.
,
Chen
,
J. Y.
,
Buchholz
, B. A.
, and
Dibble
,
R. W.
,
2007
, “A Numerical Investigation into the Anomalous Slight NOx Increase When Burning Biodiesel; A New (Old) Theory,”
Fuel Processing Technol
,
88
(
7
):
659
667
.
You do not currently have access to this content.