Asphaltene precipitation is a major problem in the oil production and transportation of oil. Changes in pressure, temperature, and composition of oil can lead to asphaltene precipitation. In the case of gas injection into oil reservoirs, the injected gas causes a change in oil composition and may lead to asphaltene precipitation. Accurate determination and prediction of the precipitated amount are vital, for this purpose there are several approaches such as experimental method, scaling equation, thermodynamics models, and neural network as the most recent ones. In this paper, we propose a new artificial neural network (ANN) optimized by particle swarm optimization (PSO) to predict the amount of asphaltene precipitation. This is conducted during the process of gas injection into oil reservoirs for enhanced oil recovery purposes. In the developed models, (1) oil composition, (2) temperature, (3) pressure, (4) oil specific gravity, (5) solvent mole percent, (6) solvent molecular weight, and (7) asphaltene content are considered as input parameters to the neural network. The weight of asphaltene and asphaltene content are considered as input parameters to the neural network and the weight of asphaltene precipitation as an output parameter. A comparison between the results of the proposed new model with Gaussian Process algorithm and previous research shows that the predictive model is more accurate.

References

References
1.
Manshad
,
A. K.
,
Mofidi
,
A. M.
,
Shariatpanahi
,
F.
, and
Edalat
,
M.
,
2008
, “
Developing of Scaling Equation With Function of Pressure to Determine Onset of Asphaltene Precipitation
,”
J. Jpn. Pet. Inst.
,
51
(
2
), pp.
102
106
.
2.
Manshad
,
A. K.
, and
Edalat
,
M.
,
2008
, “
Application of Continuous Polydisperse Molecular Thermodynamics for Modeling Asphaltene Precipitation in Crude Oil Systems
,”
Energy Fuels
,
22
(
4
), pp.
2678
2686
.
3.
Manshad
,
A. K.
,
Manshad
,
M. K.
, and
Ashoori
,
S.
,
2012
, “
The Application of an Artificial Neural Network (ANN) and a Genetic Programming Neural Network (GPNN) for the Modeling of Experimental Data of Slim Tube Permeability Reduction by Asphaltene Precipitation in Iranian Crude Oil Reservoirs
,”
Pet. Sci. Technol.
,
30
(
23
), pp.
2450
2459
.
4.
Speight
,
J. G.
,
Long
,
R. B.
, and
Trowbridge
,
T. D.
,
1984
, “
Factors Influencing the Separation of Asphaltenes From Heavy Petroleum Feedstocks
,”
Fuel
,
63
(
5
), pp.
616
620
.
5.
Ali
,
L. H.
, and
Al-Ghannam
,
K. A.
,
1981
, “
Investigations Into Asphaltenes in Heavy Crude Oils. I. Effect of Temperature on Precipitation by Alkane Solvents
,”
Fuel
,
60
(
11
), pp.
1043
1046
.
6.
Hirschberg
,
A.
,
Degong
,
L. N. J.
,
Schipper
,
B. A.
, and
Meijer
,
J. G.
,
1984
, “
Influence of Temperature and Pressure on Asphaltene Flocculation
,”
Old SPE J.
,
24
(
3
), pp.
283
293
.
7.
Srivastava
,
R.
,
Huang
,
S. S.
,
Dyer
,
S. B.
, and
Mourits
,
F. M.
,
1994
, “
Heavy Oil Recovery by Subcritical Carbon Dioxide Flooding
,”
SPE
Latin America/Caribbean Petroleum Engineering Conference
,
Buenos Aires
,
Argentina
, Apr. 27–29.
8.
Fadairo
,
A.
,
Anthony
,
A.
,
Churchill1
,
A.
, and
Olawale
,
D.
,
2010
, “
Modeling of Wax Deposition During Oil Production Using a Two-Phase Flash Calculation
,”
Pet. Coal
,
52
(
3
), pp.
193
202
.
9.
Won
,
K.
,
1986
, “
Thermodynamics for Solid Solution-Liquid-Vapor Equilibria: Wax Phase Formation From Heavy Hydrocarbon Mixtures
,”
Fluid Phase Equilib.
,
30
(), pp. 2
65
279
.
10.
Sivaraman
,
A.
, Hu,
Thomas
,
F. B.
,
Bennion
,
D. B.
, and
Jamaluddin
,
A. K. M.
, Hycal Energy Research Laboratories Ltd. Calgary, Alberta, Canada.
11.
Leontaritis
,
K. J.
, and
Mansoori
,
G. A.
,
1988
, “
Asphaltene Deposition: A Survey of Field Experiences and Research Approaches
,”
J. Pet. Sci. Eng.
,
1
(
2
), pp.
229
239
.
12.
Fanchi
,
J. R.
,
2007
,
PEH: Asphaltenes and Waxes
,
Society of Petroleum Engineers
,
Richardson, TX
.
13.
Sang
,
J. P.
, and
Mansoori
,
G. A.
,
1988
, “
Aggregation and Deposition of Heavy Organics in Petroleum Crudes
,”
Energy Sources
,
10
(
2
), pp.
109
125
.
14.
Kawanka
,
S.
,
Park
,
S. J.
, and
Mansoori
,
G. A.
,
1991
, “
Organic Deposition From Reservoir Fluids: A Thermodynamic Predictive Technique
,”
SPE Res. Eng.
,
6
(
2
), pp.
186
192
.
15.
MacMillan
,
D. J.
,
Tackett
,
J. E.
,
Jesee
,
M. A.
, and
Monger
,
T. G. A.
,
1995
, “
Unified Approach to Asphaltene Precipitation: Laboratory Measurement and Modeling
,”
J. Pet. Technol.
,
47
(
9
), pp.
788
793
.
16.
Ghanei
,
M.
, and
Edalat
,
M.
,
1996
, “
The Non-Regular Solubility Parameter Term for Predicting Onset and Amount of Asphaltene Precipitation
,” Society of Petroleum Engineers, Richardson, TX, SPE Paper No. 67329.
17.
Manshad
,
A. K.
,
2004
, “
Investigation of Thermodynamic Modeling of Asphaltene Precipitation
,” M.Sc. thesis, Amirkabir University of Technology, Tehran, Iran.
18.
Mousavi
,
S. M. R.
,
Najafi
,
I.
,
Ghazanfari
,
M. H.
, and
Amani
,
M.
,
2012
, “
Comparison of Ultrasonic Wave Radiation Effects on Asphaltene Aggregation in Toluene–Pentane Mixture Between Heavy and Extra Heavy Crude Oils
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022001
.
19.
Mahmoud
,
M.
, and
Nasr-El-Din
,
H.
,
2014
, “
Challenges During Shallow and Deep Carbonate Reservoirs Stimulation
,”
ASME J. Energy Resour. Technol
,
137
(
1
), p.
012902
.
20.
Pan
,
H.
, and
Firoozabadi
,
A.
,
2000
, “
Thermodynamic Micellization Model for Asphaltene Precipitation From Reservoir Crudes at High Pressures and Temperatures
,”
SPE Prod. Facil.
,
15
(
1
), pp.
58
65
.
21.
Victorov
,
A.
, and
Firoozabadi
,
A.
,
1996
, “
Thermodynamics of Asphaltene Deposition Using a Micellization Model
,”
AIChE J.
,
42
(
6
), pp.
1753
1764
.
22.
Rassamdana
,
H.
,
Dabir
,
B.
,
Nematy
,
M.
,
Farhani
,
M.
, and
Sahimi
,
M.
,
1996
, “
Asphalt Flocculation and Deposition: I. The Onset of Precipitate
,”
AIChE J.
,
42
(
1
), pp.
10
21
.
23.
Manshad
,
A. K.
,
Manshad
,
M. K.
,
Rostami
,
H.
,
Mojdeh Mohseni
,
S.
, and
Mohseni
,
S. M.
,
2013
, “
Developing a Scaling Equation as a Function of Pressure and Temperature to Determine the Amount of Asphaltene Precipitation
,”
Pet. Sci. Technol.
,
31
(
23
), pp.
2169
2177
.
24.
Khandelwal
,
M.
,
2011
, “
Application of an Expert System to Predict Thermal Conductivity of Rocks
,”
Neural Comput. Appl.
,
21
(
6
), pp.
1341
1347
.
25.
Yin
,
X.
,
Liu
,
Q.
,
Hao
,
H.
,
Wang
,
Z.
, and
Huang
,
K.
,
2011
, “
GMI Image Based Rock Structure Classification Using Classifier Combination
,”
Neural Comput. Appl.
,
20
(
7
), pp.
955
963
.
26.
Rostami
,
H.
, and
Mansha
,
A. K.
,
2014
, “
A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
,”
ASME J. Energy Resour. Technol
,
136
(
2
), p.
024502
.
27.
Samuel
,
R.
, and
Yao
,
D.
,
2013
, “
DrillString Vibration With Hole-Enlarging Tools: Analysis and Avoidance
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032904
.
28.
Ghasemloonia
,
A.
,
Geoff Rideout
,
D.
, and
Butt
,
S. D.
,
2013
, “
Vibration Analysis of a Drillstring in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032902
.
29.
Zahedi
,
G.
,
Fazlalib
,
A. R.
,
Hosseinia
,
S. M.
,
Pazukic
,
G. R.
, and
Sheikhattara
,
L.
,
2009
, “
Prediction of Asphaltene Precipitation in Crude Oil
,”
J. Pet. Sci. Eng.
,
68
(
3
), pp.
218
222
.
30.
Rostami
,
H.
, and
Manshad
,
A. K.
,
2010
, “
Prediction of Asphaltene Precipitation in Live and Tank Crude Oil Using Gaussian Process Regression
,”
Pet. Sci. Technol.
,
31
(
9
), pp.
913
922
.
31.
Manshad
,
A. K.
,
Manshad
,
M. K.
, and
Ashoori
,
S.
,
2012
, “
The Application of an Artificial Neural Network (ANN) and a Genetic Programming Neural Network (GPNN) for the Modeling of Experimental Data of Slim Tube Permeability Reduction by Asphaltene Precipitation in Iranian Crude Oil Reservoirs
,”
Pet. Sci. Technol.
,
30
(
23
), pp.
2450
2459
.
32.
Rajasekaran
,
S.
, and
Vijayalakshmi Pai
,
G. A.
,
2004
,
Neural Networks, Fuzzy Logic, and Genetic Algorithms Synthesis and Applications
,
Prentice-Hall
,
Delhi, India
.
33.
Gharbi
,
R.
,
1997
, “
Estimating the Isothermal Compressibility Coefficient of Under Saturated Middle East Crudes Using Neural Networks
,”
Energy Fuels
,
11
(
2
), pp.
372
378
.
34.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Areuniversal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.
35.
Brown
,
M.
, and
Harris
,
C. J.
,
1994
,
Neurofuzzy Adaptive Modelling and Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
36.
Sayyad
,
H.
,
Manshad
,
A. K.
, and
Rostami
,
H.
,
2014
, “
Application of Hybrid Neural Particle Swarm Optimization Algorithm for Prediction of MMP
,”
Fuel
,
116
, pp.
625
633
.
37.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Sixth International Symposium on Micro Machine and Human Science
(
MHS'95
), Nagoya, Japan, Oct. 4–6, pp.
39
43
.
38.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley Longman
,
Boston
.
39.
Bertsimas
,
D.
, and
Nohadani
,
O.
,
2010
, “
Robust Optimization With Simulated Annealing
,”
48
(
2
),
J. Global Optim.
, pp.
323
334
.
40.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
(
ICNN'95
), Perth, WA, Nov. 27–Dec. 1, Vol.
4
, pp.
1942
1948
.
41.
Liu
,
D.
, and
Hou
,
Z.-G.
,
2007
,
Advances in Neural Networks: 4th International Symposium on Neural Networks
(
ISNN 2007
), Nanjing, China, June 3–7,
Springer-Verlag,
New York
.
42.
Eberhart
,
R.
,
Simpson
,
P.
, and
Dobbins
,
R.
,
1996
,
Computational Intelligence PC Tools
,
Academic Press Professional, Inc.
,
San Diego, CA
.
43.
Hu
,
Y.-F.
,
Chen
,
G.-J.
,
Yang
,
J.-T.
, and
Guo
,
T.-M.
,
2000
, “
A Study on the Application of Scaling Equation for Asphaltene Precipitation
,”
Fluid Phase Equilib.
,
171
(
1
), pp.
181
195
.
You do not currently have access to this content.