Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.

References

References
1.
Graham
,
J. W.
, and
Muench
,
N. L.
,
1959
, “
Analytical Determination of Optimum Bit Weight and Rotary Speed Combinations
,”
Fall Meeting of the Society of Petroleum Engineers
, Dallas, TX, SPE Paper No. 1349-G.
2.
Galle
,
E. M.
, and
Woods
,
A. B.
,
1963
, Best Constant Weight and Rotary Speed for Rotary Rock Bits (Drilling and Production Practice), API, New York, pp.
48
73
.
3.
Hareland
,
G.
, and
Rampersad
,
P. R.
,
1994
, “
Drag-Bit Model Including Wear
,”
III Latin American/Caribbean Petroleum Engineering Conference
, Buenos Aires, AR, Apr. 27–29.
4.
Hareland
,
G.
, and
Nygaard
,
R.
,
2007
, “
Drilling Simulation Versus Actual Performance in Western Canada
,”
SPE Rock Mountain Oil and Gas Technology Symposium
, Denver, CO, Apr. 16–18, SPE Paper No. 106570.
5.
Salehi
,
S.
, and
Nygaard
,
R.
,
2014
, “
Full Fluid–Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures
,”
ASME J. Energy Res. Technol.
,
137
(
1
), p.
012903
.10.1115/1.4028251
6.
Gjelstad
,
G.
,
Hareland
,
G.
,
Nikolaisen
,
K. N.
, and
Bratli
,
R. K.
,
1998
, “
The Method of Reducing Drilling Costs More Than 50 Percent
,”
SPE/ISRM Eurock
, Trondheim, July 8–10, Paper No. SPE/ISRM 47342.
7.
Rostami
,
H.
, and
Manshad
,
A. K.
,
2014
, “
A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
024502
.10.1115/1.4026917
8.
Salehi
,
S.
,
Hareland
,
G.
,
Dehkordi
,
K. K.
,
Ganji
,
M.
, and
Abdollahi
,
M.
,
2009
, “
Casing Collapse Risk Assessment and Depth Prediction With a Neural Network System Approach
,”
J. Pet. Sci. Eng.
,
69
(
1–2
), pp.
156
162
.10.1016/j.petrol.2009.08.011
9.
Samuel
,
R.
,
2012
, “
Modeling and Analysis of Drillstring Vibration in Riserless Environment
,”
ASME J. Energy Res. Technol.
,
135
(
1
), p.
013101
.10.1115/1.4007691
10.
Dubinsky
,
V. S.
, and
Baecker
,
D. R.
,
1998
, “
An Interactive Drilling-Dynamics Simulator for Drilling Optimization and Training
,”
Annual Technical Conference and Exhibition
, New Orleans, Sept. 27–30, SPE Paper No. 49205.
11.
Dashevskiy
,
D.
,
Dubinsky
,
V.
, and
Macpherson
,
J. D.
,
1999
, “
Application of Neural Networks for Predictive Control in Drilling Dynamics
,”
SPE Annual Technical Conference and Exhibition
, Houston, Oct. 3–6, SPE Paper No. 56442.
12.
Bahari
,
M. H.
,
Bahari
,
A.
,
Moharrami
,
F. N.
, and
Sistani
,
M. B. N.
,
2008
, “
Determining Bourgoyne and Young Model Coefficients Using Genetic Algorithm to Predict Drilling Rate
,”
J. Appl. Sci.
,
8
(
17
), pp.
3050
3054
.10.3923/jas.2008.3050.3054
13.
Bataee
,
M.
, and
Mohseni
,
S.
,
2011
, “
Application of Artificial Intelligent Systems in ROP Optimization: A Case Study in Shadegan Oil Field
,”
SPE Middle East Unconventional Gas Conference and Exhibition
, Muscat, Oman, Jan. 31–Feb. 2, SPE Paper No. 140029.
14.
Amar
,
K.
, and
Ibrahim
,
A.
,
2012
, “
Rate of Penetration Prediction and Optimization Using Advances in Artificial Neural Networks: A Comparative Study
,”
4th International Joint Conference on Computational Intelligence
, pp.
647
652
.
15.
Jahanbakhshi
,
R.
, and
Keshavarzi
,
R.
,
2012
, “
Real-Time Prediction of Rate of Penetration During Drilling Operation in Oil and Gas Wells
,”
46th American Rock Mechanics/Geomechanics Symposium
, Chicago, IL, June 24–27.
16.
Monazami
,
M.
,
Hashemi
,
A.
, and
Shahbazian
,
M.
,
2012
, “
Drilling Rate of Penetration Prediction Using Artificial Neural Network: A Case Study of One of Iranian Southern Oil Fields
,”
J. Oil Gas Bus.
,
6
(
6
), pp.
21
31
.
17.
Jacinto
,
C. M. C.
,
Filho
,
P. J. F.
,
Nassar
,
S. M.
,
Roisenberg
,
M.
,
Rodrigues
,
D. G.
, and
Lima
,
M. D. C.
,
2013
, “
Optimization Models and Prediction of Drilling Rate (ROP) for the Brazilian Pre-Salt Layer
,”
Chem. Eng. Trans.
,
33
, pp.
823
828
.10.3303/CET1333138
18.
Basarir
,
H.
,
Tutluoglu
,
L.
, and
Karpuz
,
C.
,
2014
, “
Penetration Rate Prediction for Diamond Bit Drilling by Adaptive Neuro-Fuzzy Inference System and Multiple Regressions
,”
Eng. Geol.
,
173
, pp.
1
9
.10.1016/j.enggeo.2014.02.006
19.
Bilgesu
,
H. I.
,
Altmis
,
U.
,
Ameri
,
S.
,
Mohaghegh
,
S.
, and
Aminian
,
K.
,
1998
, “
A New Approach to Predict Bit Life Based on Tooth or Bearing Failures
,”
SPE Eastern Regional Meeting
, Pittsburgh, PA, Nov. 9–11, SPE Paper No. 51082.
20.
Yilmaz
,
S.
,
Demircioglu
,
C.
, and
Akin
,
S.
,
2002
, “
Application of Artificial Neural Networks to Optimum Bit Selection
,”
Comput. Geosci.
,
28
(
2
), pp.
261
269
.10.1016/S0098-3004(01)00071-1
21.
Bataee
,
M.
,
Edalatkhah
,
S.
, and
Ashna
,
R.
,
2010
, “
Comparison Between Bit Optimization Using Artificial Neural Network and Other Methods Base on Log Analysis Applied in Shadegan Oil Field
,”
CPS/SPE International Oil and Gas Conference and Exhibition
, Beijing, China, June 8–10.
22.
Jamshidi
,
E.
, and
Mostafavi
,
H.
,
2013
, “
Soft Computation Application to Optimize Drilling Bit Selection Utilizing Virtual Intelligence and Genetic Algorithms
,”
International Petroleum Technology Conference
, Beijing, China, Mar. 26–28.
23.
Arehart
,
R. A.
,
1989
, “
Drill-Bit Diagnosis With Neural Networks
,”
The SPE Annual Technical Conference and Exhibition
, San Antonio, Oct. 8–11, SPE Paper No. 19558.
24.
Gidh
,
Y.
,
Purwanto
,
A.
, and
Ibrahim
,
H.
,
2012
, “
Artificial Neural Network Drilling Parameter Optimization System Improves ROP by Predicting/Managing Bit Wear
,” SPE Intelligent Energy International, Mar. 27–29, Utrecht, the Netherlands, Paper No. 149801-MS.
25.
Yi
,
P.
,
Kumar
,
A.
, and
Samuel
,
R.
,
2014
, “
Realtime Rate of Penetration Optimization Using the Shuffled Frog Leaping Algorithm
,”
ASME J. Energy Res. Technol.
,
137
(
3
), p.
032902
.10.1115/1.4028696
26.
Fruhwirth
,
R. K.
,
Thonhauser
,
G.
, and
Mathis
,
W.
,
2006
, “
Hybrid Simulation Using Neural Networks to Predict Drilling Hydraulics in Real Time
,”
The Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 24–27.
27.
Taghipour
,
A.
,
Lund
,
B.
,
Ytrehus
,
J. D.
,
Skalle
,
P.
,
Saasen
,
A.
,
Reyes
,
A.
, and
Abdollahi
,
J.
,
2014
, “
Experimental Study of Hydraulics and Cuttings Transport in Circular and Noncircular Wellbores
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
022904
.10.1115/1.4027452
28.
Tian
,
S.
, and
Finger
,
J. T.
,
2000
, “
Advanced Geothermal Wellbore Hydraulics Model
,”
ASME J. Energy Res. Technol.
,
122
(
3
), pp.
142
146
.10.1115/1.1289391
29.
Yanfang
,
W.
, and
Salehi
,
S.
,
2015
, “
Drilling Hydraulics Optimization Using Neural Networks
,”
SPE Digital Energy Conference and Exhibition
, Woodlands, TX, Mar. 3–5, SPE Paper No. 173420.
30.
Yaghini
,
M.
,
2010
, “
Data Mining, Part 2. Data Understanding and Preparation
,” http://webpages.iust.ac.ir/yaghini/Courses/Data_Mining_882/DM_02_04_Data%20Transformation.pdf, last accessed 2013.
31.
Dupriest
,
F. E.
, and
Koederitz
,
W. L.
,
2005
, “
Maximizing Drill Rates With Real-Time Surveillance of Mechanical Specific Energy
,”
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, Feb. 23–25, SPE Paper No. 92194.
32.
Teale
,
R.
,
1965
, “
The Concept of Specific Energy in Rock Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
2
(
1
), pp.
57
73
.10.1016/0148-9062(65)90022-7
33.
Hareland
,
G.
, and
Nygaard
,
R.
,
2007
, “
Calculating Unconfined Rock Strength From Drilling Data. Rock Mechanics: Meeting Society's Challenges and Demands, Two Volume Set
,”
1st Canada-US Rock Mechanics Symposium
, Vancouver, Canada, May 27–31.
34.
Mohan
,
K.
,
Adil
,
F.
, and
Sameul
,
R.
,
2014
, “
Comprehensive Hydromechanical Specific Energy Calculation for Drilling Efficiency
,”
ASME J. Energy Res. Technol.
,
137
(
1
), p.
012904
.10.1115/1.4028272
35.
Bontempi
,
G.
,
Bersini
,
H.
, and
Birattari
,
M.
,
2001
, “
The Local Paradigm for Modeling and Control: From Neuro-Fuzzy to Lazy Learning
,”
Fuzzy Sets Syst.
,
121
(
1
), pp.
59
72
.10.1016/S0165-0114(99)00172-4
36.
Efroymson
,
M. A.
,
1960
, “
Multiple Regression Analysis
,”
Mathematical Methods for Digital Computers
,
A.
Ralston
and
H. S.
Wilf
, eds.,
Wiley
,
New York
.
37.
Esmaeili
,
A.
,
Elahifar
,
B.
,
Fruhwirth
,
R. K.
, and
Thonhauser
,
G.
,
2012
, “
ROP Modeling Using Neural Network and Drill String Vibration Data
,”
SPE Kuwait International Petroleum Conference and Exhibition
, Kuwait, SPE Paper No. 163330.
38.
Haciislamoglu
,
M.
, and
Langlinais
,
J.
,
1990
, “
Non-Newtonian Flow in Eccentric Annuli
,”
ASME J. Energy Res. Technol.
,
112
(
3
), pp.
163
169
.10.1115/1.2905753
You do not currently have access to this content.