The rate-controlled constrained-equilibrium (RCCE) method is a reduction technique based on local maximization of entropy or minimization of a relevant free energy at any time during the nonequilibrium evolution of the system subject to a set of kinetic constraints. In this paper, RCCE has been used to predict ignition delay times of low temperatures methane/air mixtures in shock tube. A new thermodynamic model along with RCCE kinetics has been developed to model thermodynamic states of the mixture in the shock tube. Results are in excellent agreement with experimental measurements.

References

References
1.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2014
, “Constrained-Equilibrium Modeling of Methane Oxidation in Air,”
ASME J. Energy Resour. Technol.
,
136
(3), p.
032205
.10.1115/1.4027692
2.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.10.1016/S0010-2180(71)80166-9
3.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.10.1016/0360-1285(90)90046-6
4.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.10.1016/j.combustflame.2009.05.013
5.
Law
,
R.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1988
, “
Rate-Controlled Constraint Equilibrium Calculations of Ignitin Delay Times in Hydrogen-Oxygen Mixtures
,”
22nd Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, p.
1705
.
6.
Bishnu
,
P.
,
Hamiroune
,
D.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1997
, “
Constrained-Equilibrium Calculations for Chemical Systems Subject to Generalized Linear Constraints Using the NASA and STANJAN Equilibrium Programs
,”
Combust. Theory Model.
,
1
, pp.
295
312
.
7.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1998
, “
Rate-Controlled Constrained-Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
, pp.
81
94
.
8.
Ugarte
,
S.
,
Gao
,
Y.
, and
Metghalchi
,
M.
,
2005
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
3
, pp.
43
53
.
9.
Janbozorgi
,
M.
,
Gao
,
Y.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2006
,
Proceedings of the ASME (Int.)
,
Chicago
, Nov. 5–10.
10.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
M.
,
2014
, “
Constrained-Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032205
.10.1115/1.4027692
11.
Chaos
,
M.
, and
Dryer
,
F. L.
,
2010
, “
Chemical-Kinetic Modeling of Ignition Delays: Considerations in Interpreting Shock Tube Data
,”
Int. J. Chem. Kinet.
,
42
(
3
), pp.
143
150
.10.1002/kin.20471
12.
Frenklach
,
M.
,
Li Kwok Cheong
,
C. K.
, and
Oran
,
E. S.
,
1984
, “LDV
Measurement of Gas Flow Behind Reflected Shocks
,”
Prog. Astronaut. Aeronaut.
,
95
, pp.
722
735
.
13.
Michael
,
J. V.
, and
Sutherland
,
J. W.
,
1986
, “
The Thermodynamic State of the Hot Gas Behind Reflected Shock Waves: Implication to Chemical Kinetics
,”
Int. J. Chem. Kinet.
,
18
(
4
), pp.
409
436
.10.1002/kin.550180402
14.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
2001
, “
Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube
,”
Shock Waves
,
10
(
6
), pp.
405
420
.10.1007/PL00004051
15.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinet.
,
36
(
9
), pp.
510
523
.10.1002/kin.20024
16.
Blumenthal
,
R.
,
Fieweger
,
K.
,
Komp
,
K. H.
, and
Adomeit
,
G.
,
1996
, “
Gas Dynamic Features of Self Ignition of Non Diluted Fuel/Air Mixtures at High Pressure
,”
Combust. Sci. Technol.
,
113
(
1
), pp.
137
166
.10.1080/00102209608935491
17.
Wang
,
B. L.
,
Olivier
,
H.
, and
Grönig
,
H.
,
2003
, “
Ignition of Shock-Heated H2-Air-Steam Mixtures
,”
Combust. Flame
,
133
(1–2), pp.
93
106
.10.1016/S0010-2180(02)00552-7
18.
Furutani
,
M.
,
Kitaguchi
,
Y.
,
Yamada
,
T.
, and
Ohta
,
Y.
,
1999
,
Proceedings of the 17th ICDERS
,
University of Heidelberg
,
Heidelberg, Germany
.
19.
Furutani
,
M.
,
Ohta
,
Y.
,
Kitaguchi
,
Y.
,
Osaki
,
M.
,
Murai
,
M.
, and
Isogai
,
T.
,
2001
, “Shock-Compression Low-Temperature Ignition and Its Peculiarity,”
Trans. Jpn. Soc. Mech. Eng. B
,
67
(662), pp.
2625
2631
.10.1299/kikaib.67.2625
20.
Dryer
,
F. L.
, and
Chaos
,
M.
,
2008
, “
Ignition of Syngas/Air and Hydrogen/Air Mixtures at Low Temperatures and High Pressures: Experimental Data Interpretation and Kinetic Modeling Implications
,”
Combust. Flame
,
152
(
1–2
), pp.
293
299
.10.1016/j.combustflame.2007.08.005
21.
Chaos
,
M.
, and
Dryer
,
F. L.
,
2008
, “
Syngas Combustion Kinetics and Applications
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1051
1094
.
22.
Chaos
,
M.
,
Burke
,
M. P.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
In Lieuwen
,
T. C.
,
Yang
,
V.
, and
Yetter
,
R. A.
eds.,
2010
,
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
, Chap. 2.
23.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
781
789
.10.1016/S0082-0784(96)80287-6
24.
Misawa
,
S.
,
Shiraishi
,
N.
,
Kosaka
,
H.
, and
Matsui
,
Y.
,
2001
,
Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu
,
2
, pp.
519
520
.
25.
Davidson
,
D. F.
,
Gauthier
,
B. M.
, and
Hanson
,
R. K.
,
2005
, “
Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1175
1182
.10.1016/j.proci.2004.08.004
26.
Reehal
,
S. C.
,
Kalitan
,
D. M.
,
Hair
,
T.
,
Barrett
,
A. B.
, and
Petersen
,
E. L.
,
2007
, “
Ignition Delay Time Measurement of Synthesis Gas Mixture at Engine Pressures
,”
Proceedings of the 5th U.S. Combustion Meeting
,
San Diego, CA
, Paper No. C24.
27.
Stranic
,
I.
,
Chase
,
D.
,
Harmon
,
J. T.
,
Yang
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2012
, “
Shock Tube Measurements of Ignition Delay Times for Butanol Isomers
,”
Combust. Flame
,
159
(
2
) pp.
516
527
10.1016/j.combustflame.2011.08.014
28.
Li
,
H.
,
Owens
,
Z. C.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
A Simple Reactive Gasdynamic Model for the Computation of Gas Temperature and Species Concentrations Behind Reflected Shock Waves
,”
Int. J. Chem. Kin.
,
40
(
4
), pp.
89
98
.
29.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
(
1–2
), pp.
25
42
.10.1016/j.combustflame.2003.09.002
You do not currently have access to this content.