To reduce the tremendous increase in the energy consumption in the residential sector, there is a continuous need to improve the cooling efficiency and reduce running cost in domestic refrigerators. In this regard, three domestic refrigerator configurations have been considered. These configurations, namely, top mounted freezer (TMF), bottom mounted freezer (BMF), and side mounted freezer (SMF), were numerically simulated using ansys fluent 14 code. The refrigerators considered in this paper are air cooled by natural convection mechanism. For improved accuracy, piecewise polynomial function was used to obtain the temperature dependent specific heat capacity, while the discrete ordinate (DO) model was used to account for the radiation energy exchange between the refrigerator walls and cooling air. The effect of refrigerator opening and refrigerator load on the performance of the model refrigerators was also studied. Results show that cabinets that have the same relative position from the base (ground level) in TMF, BMF, and SMF configuration was observed to have similar cooling effectiveness irrespective of the compartment (i.e., freezer or fresh food). Load in the lowest parts of the model refrigerator consistently maintains the highest cooling effectiveness with about 15% more than their respective topmost cabinet. Thus, consumer preference of highly efficient compartment (either freezer or refrigerator) should be considered. After 300 min cooling time, the TMF and BMF cooling load are more than that of SMF by about 8%. This suggests that SMF with better cooling effectiveness will consume less energy and would have a lower running cost.

References

References
1.
Negrao
,
C. O. R.
, and
Hermes
,
C. J. L.
,
2011
, “
Energy and Cost Savings in Household Refrigerating Appliances: A Simulation-Based Design Approach
,”
Appl. Energy
,
88
(
9
), pp.
3051
3060
.10.1016/j.apenergy.2011.03.013
2.
Hasanuzzaman
,
M.
,
Saidur
,
R.
, and
Masjuki
,
H. H.
,
2009
, “
Effects of Operating Variables on Heat Transfer and Energy Consumption of a Household Refrigerator-Freezer During Closed Door Operation
,”
Energy
,
34
(
2
), pp.
196
198
.10.1016/j.energy.2008.11.003
3.
Al-Ghandoor
,
A.
,
Jaber
,
J. O.
,
Al-Hinti
,
I.
, and
Mansour
,
I. M.
,
2009
, “
Residential Past and Future Energy Consumption: Potential Savings and Environmental Impact
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1262
1274
.10.1016/j.rser.2008.09.008
4.
Hermes
,
C. J. L.
,
Melo
,
C.
,
Knabben
,
F. T.
, and
Goncalves
,
J. M.
,
2009
, “
Prediction of the Energy Consumption of Household Refrigerators and Freezers Via Steady-State Simulation
,”
Appl. Energy
,
86
(
7–8
), pp.
1311
1319
.10.1016/j.apenergy.2008.10.008
5.
Khir
,
T.
,
Jassim
,
R. K.
, and
Zaki
,
G. M.
,
2007
, “
Application of Exergoeconomic Techniques to the Optimization of a Refrigeration Evaporator Coil With Continuous Fins
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
266
277
.10.1115/1.2751507
6.
Yoon
,
W. J.
,
Seo
,
K.
,
Chung
,
H. J.
, and
Kim
,
Y.
,
2012
, “
Performance Optimization of Dual-Loop Cycles Using R-600a and Hydrocarbon Mixtures Designed for a Domestic Refrigerator-Freezer
,”
Int. J. Refrig.
,
35
(
6
), pp.
1657
1667
.10.1016/j.ijrefrig.2012.04.019
7.
Yoon
,
W. J.
,
Jung
,
H. W.
,
Chung
,
H. J.
, and
Kim
,
Y.
,
2011
, “
Performance Optimization of a Two-Circuit Cycle With Parallel Evaporators for a Domestic Refrigerator-Freezer
,”
Int. J. Refrig.
,
34
(
1
), pp.
216
224
.10.1016/j.ijrefrig.2010.09.008
8.
Yoon
,
W. J.
,
Seo
,
K.
,
Chung
,
H. J.
,
Lee
,
E. J.
, and
Kim
,
Y.
,
2012
, “
Performance Optimization of a Lorenz–Meutzner Cycle Charged With Hydrocarbon Mixtures for a Domestic Refrigerator-Freezer
,”
Int. J. Refrig.
,
35
(
1
), pp.
36
46
.10.1016/j.ijrefrig.2011.09.014
9.
Bilir
,
N.
, and
Ersoy
,
H. K.
,
2009
, “
Performance Improvement of the Vapour Compression Refrigeration Cycle by a Two-Phase Constant Area Ejector
,”
Int. J. Energy Res.
,
33
(
5
), pp.
469
480
.10.1002/er.1488
10.
He
,
J.
,
Chen
,
J.
, and
Wu
,
C.
,
2003
, “
Optimization on the Performance Characteristics of a Magnetic Ericsson Refrigeration Cycle Affected by Multi-Irreversibilities
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
318
324
.10.1115/1.1616037
11.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
12.
Priedeman
,
D. K.
,
Garrabrant
,
M. A.
,
Mathias
,
J. A.
,
Stout
,
R. E.
, and
Christensen
,
R. N.
,
2001
, “
Performance of a Residential-Sized GAX Absorption Chiller
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
236
241
.10.1115/1.1385519
13.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
.10.1115/1.3120381
14.
Pons
,
M.
,
1996
, “
Second Law Analysis of Adsorption Cycles With Thermal Regeneration
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
229
236
.10.1115/1.2793867
15.
Padilla
,
M.
,
Revellin
,
R.
, and
Bonjour
,
J.
,
2010
, “
Exergy Analysis of R413A as Replacement of R12 in a Domestic Refrigeration System
,”
Energy Conv. Manage.
,
51
(
11
), pp.
2195
2201
.10.1016/j.enconman.2010.03.013
16.
Bolaji
,
B. O.
,
2010
, “
Experimental Study of R152a and R32 to Replace R134a in a Domestic Refrigerator
,”
Energy
,
35
(
9
), pp.
3793
3798
.10.1016/j.energy.2010.05.031
17.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2007
, “
Improved Energy Efficiency for HFC134a Domestic Refrigerator Retrofitted With Hydrocarbon Mixture (HC290/HC600a) as Drop-In Substitute
,”
Energy Sustainable Dev.
,
11
(
4
), pp.
29
33
.10.1016/S0973-0826(08)60407-X
18.
Smale
,
N. J.
,
Moureh
,
J.
, and
Cortella
,
G.
,
2006
, “
A Review of Numerical Models of Airflow in Refrigerated Food Applications
,”
Int. J. Refrig.
,
29
(
6
), pp.
911
930
.10.1016/j.ijrefrig.2006.03.019
19.
Laguerre
,
O.
,
Ben Amara
,
S.
,
Charrier-Mojtabi
,
M. C.
,
Lartigue
,
B.
, and
Flick
,
D.
,
2008
, “
Experimental Study of Air Flow by Natural Convection in a Closed Cavity: Application in a Domestic Refrigerator
,”
J. Food Eng.
,
85
(
4
), pp.
547
560
.10.1016/j.jfoodeng.2007.08.023
20.
Laguerre
,
O.
,
Ben Amara
,
S.
, and
Flick
,
D.
,
2005
, “
Experimental Study of Heat Transfer by Natural Convection in a Closed Cavity: Application in a Domestic Refrigerator
,”
J. Food Eng.
,
70
(
4
), pp.
523
537
.10.1016/j.jfoodeng.2004.10.007
21.
Lacerda
,
V.
,
Melo
,
C.
,
Barbosa
,
J.
, Jr.
, and
Duarte
,
P.
,
2005
, “
Measurements of the Air Flow Field in the Freezer Compartment of a Top-Mount No-Frost Refrigerator: The Effect of Temperature
,”
Int. J. Refrig.
,
28
(
5
), pp.
774
783
.10.1016/j.ijrefrig.2004.10.009
22.
Inan
,
C.
,
Gonul
,
T.
, and
Tanes
,
M. Y.
,
2003
, “
X-Ray Investigation of a Domestic Refrigerator. Observations at 25 °C Ambient Temperature
,”
Int. J. Refrig.
,
26
(
2
), pp.
205
213
.10.1016/S0140-7007(02)00059-2
23.
Laguerre
,
O.
, and
Flick
,
D.
,
2004
, “
Heat Transfer by Natural Convection in Domestic Refrigerators
,”
J. Food Eng.
,
62
(
1
), pp.
79
88
.10.1016/S0260-8774(03)00173-0
24.
Gupta
,
J.
,
Ram Gopal
,
M.
, and
Chakraborty
,
S.
,
2007
, “
Modeling of a Domestic Frost-Free Refrigerator
,”
Int. J. Refrig.
,
30
(
2
), pp.
311
322
.10.1016/j.ijrefrig.2006.06.006
25.
Foster
,
A. M.
,
Barrett
,
R.
,
James
,
S. J.
, and
Swain
,
M. J.
,
2002
, “
Measurement and Prediction of Air Movement Through Doorways in Refrigerated Rooms
,”
Int. J. Refrig.
,
25
(
8
), pp.
1102
1109
.10.1016/S0140-7007(01)00108-6
26.
Foster
,
A. M.
,
Swain
,
M. J.
,
Barrett
,
R.
, and
James
,
S. J.
,
2003
, “
Experimental Verification of Analytical and CFD Predictions of Infiltration Through Cold Store Entrances
,”
Int. J. Refrig.
,
26
(
8
), pp.
918
925
.10.1016/S0140-7007(03)00097-5
27.
Xie
,
J.
,
Qu
,
X. H.
,
Shi
,
J. Y.
, and
Sun
,
D. W.
,
2006
, “
Effects of Design Parameters on Flow and Temperature Fields of a Cold Store by CFD Simulation
,”
J. Food Eng.
,
77
(
2
), pp.
355
363
.10.1016/j.jfoodeng.2005.06.044
28.
Ge
,
Y. T.
,
Tassou
,
S. A.
, and
Hadawey
,
A.
,
2010
, “
Simulation of Multi-Deck Medium Temperature Display Cabinets With the Integration of CFD and Cooling Coil Models
,”
Appl. Energy
,
87
(
10
), pp.
3178
3188
.10.1016/j.apenergy.2010.02.028
29.
D'Agaro
,
P.
,
Cortella
,
G.
, and
Croce
,
G.
,
2006
, “
Two- and Three-Dimensional CFD Applied to Vertical Display Cabinets Simulation
,”
Int. J. Refrig.
,
29
(
2
), pp.
178
190
.10.1016/j.ijrefrig.2005.06.007
30.
Cortella
,
G.
,
2002
, “
CFD-Aided Retail Cabinets Design
,”
Comput. Electron. Agric.
,
34
(
1
), pp.
43
66
.10.1016/S0168-1699(01)00179-X
31.
Laguerre
,
O.
, and
Flick
,
D.
,
2010
, “
Temperature Prediction in Domestic Refrigerators: Deterministic and Stochastic Approaches
,”
Int. J. Refrig.
,
33
(
1
), pp.
41
51
.10.1016/j.ijrefrig.2009.09.014
32.
Laguerre
,
O.
,
Benamara
,
S.
, and
Flick
,
D.
,
2010
, “
Numerical Simulation of Simultaneous Heat and Moisture Transfer in a Domestic Refrigerator
,”
Int. J. Refrig.
,
33
(
7
), pp.
1425
1433
.10.1016/j.ijrefrig.2010.04.010
33.
Laguerre
,
O.
,
Benamara
,
S.
,
Moureh
,
J.
, and
Flick
,
D.
,
2007
, “
Numerical Simulation of Air Flow and Heat Transfer in Domestic Refrigerators
,”
J. Food Eng.
,
81
(
1
), pp.
144
156
.10.1016/j.jfoodeng.2006.10.029
34.
Cui
,
J.
, and
Wang
,
S.
,
2004
, “
Application of CFD in Evaluation and Energy-Efficient Design of Air Curtains for Horizontal Refrigerated Display Cases
,”
Int. J. Therm. Sci.
,
43
(
10
), pp.
993
1002
.10.1016/j.ijthermalsci.2004.02.004
35.
Hoang
,
M. L.
,
Verboven
,
P.
,
De Baerdemaeker
,
J.
, and
Nicolaï
,
B. M.
,
2000
, “
Analysis of the Air Flow in a Cold Store by Means of Computational Fluid Dynamics
,”
Int. J. Refrig.
,
23
(
2
), pp.
127
140
.10.1016/S0140-7007(99)00043-2
36.
Bayer
,
O.
,
Oskay
,
R.
,
Paksoy
,
A.
, and
Aradag
,
S.
,
2013
, “
CFD Simulations and Reduced Order Modeling of a Refrigerator Compartment Including Radiation Effects
,”
Energy Conv. Manage.
,
69
, pp.
68
76
.10.1016/j.enconman.2013.01.024
37.
Sun
,
D. W.
, and
Hu
,
Z.
,
2003
, “
CFD Simulation of Coupled Heat and Mass Transfer Through Porous Foods During Vacuum Cooling Process
,”
Int. J. Refrig.
,
26
(
1
), pp.
19
27
.10.1016/S0140-7007(02)00038-5
38.
Foster
,
A. M.
,
Madge
,
M.
, and
Evans
,
J. A.
,
2005
, “
The Use of CFD to Improve the Performance of a Chilled Multi-Deck Retail Display Cabinet
,”
Int. J. Refrig.
,
28
(
5
), pp.
698
705
.10.1016/j.ijrefrig.2004.12.009
39.
Belman-Flores
,
J.
,
Gallegos-Muñoz
,
A.
, and
Puente-Delgado
,
A.
,
2014
, “
Analysis of the Temperature Stratification of a No-Frost Domestic Refrigerator With Bottom Mount Configuration
,”
Appl. Therm. Eng.
,
65
(
1
), pp.
299
307
.10.1016/j.applthermaleng.2014.01.022
40.
Benamara
,
S.
,
Laguerre
,
O.
,
Charrier-Mojtabi
,
M. C.
,
Lartigue
,
B.
, and
Flick
,
D.
,
2008
, “
PIV Measurement of the Flow Field in a Domestic Refrigerator Model: Comparison With 3D Simulations
,”
Int. J. Refrig.
,
31
(
8
), pp.
1328
1340
.10.1016/j.ijrefrig.2008.04.005
41.
Yang
,
K. S.
,
Chang
,
W. R.
,
Chen
,
I. Y.
, and
Wang
,
C. C.
,
2010
, “
An Investigation of a Top-Mounted Domestic Refrigerator
,”
Energy Conv. Manage.
,
51
(
7
), pp.
1422
1427
.10.1016/j.enconman.2010.01.016
42.
ANSYS Inc.
,
2009
,
ANSYS FLUENT 12.0 Theory Guide
,
Canonsburg
, PA.
43.
Reynolds
,
W.
,
1987
, “
Fundamentals of Turbulence for Turbulence Modeling and Simulation
,” Lecture Notes for Von Karman Institute, AGARD Lecture Note Series, NATO, New York, pp.
1
66
.
44.
Shih
,
T. H.
,
Liou
,
W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,” NASA STI/Recon Technical Report No. 95, p.
11442
.
45.
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2013
, “
Experimental and Numerical Investigations of an Atmospheric Diffusion Oxy-Combustion Flame in a Gas Turbine Model Combustor
,”
Appl. Energy
,
111
, pp.
401
415
.10.1016/j.apenergy.2013.05.027
46.
Zheng
,
Y.
,
Fan
,
J.
,
Ma
,
Y.
,
Sun
,
P.
, and
Cen
,
K.
,
2000
, “
Computational Modeling of Tangentially Fired Boiler(II) NOx Emissions
,”
Chin. J. Chem. Eng.
,
8
(
3
), pp.
247
250
.
47.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
48.
Shuja
,
S. Z.
, and
Habib
,
M. A.
,
1996
, “
Fluid Flow and Heat Transfer Characteristics in Axisymmetric Annular Diffusers
,”
Comput. Fluids
,
25
(
2
), pp.
133
150
.10.1016/0045-7930(95)00033-X
49.
Habib
,
M. A.
,
Elshafei
,
M.
, and
Dajani
,
M.
,
2008
, “
Influence of Combustion Parameters on NOx Production in an Industrial Boiler
,”
Comput. Fluids
,
37
(
1
), pp.
12
23
.10.1016/j.compfluid.2007.04.006
50.
Ashrae
,
A. H.
,
2006
,
Refrigeration
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
You do not currently have access to this content.