In this study, a novel inexact two-stage stochastic robust-compensation programming (ITSP-RC) model is developed for CO2 emission reduction management under uncertainties. This model is attempted to integrate ITSP and stochastic RC programming into a general framework and apply the ITSP-RC for power management and CO2 emission reduction management, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a two-stage context. Moreover, it can reflect dynamic and randomness of the energy systems during the planning horizon. The developed method has been applied to a case to solve CO2 emission management problem in electric supply environmental management. A number of scenarios corresponding to different adoption rate levels of carbon capture, utilization, and storage technology are examined. With the RC programming, regional energy systems would have a stable financial budget. The result suggests that the methodology is applicable for reflecting complexities of large-scale energy management systems and addressing CO2 emissions reduction issue with the planning period.

References

References
1.
IPCC
,
2007
,
Climate Change: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
2.
IPCC
,
2007
,
Climate Change: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
3.
IPCC
,
2007
,
Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Cambridge, UK
.
4.
ShivaPrasad
,
B. G.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
020301
.
5.
Cohen
,
S. M.
,
Rochelle
,
G. T.
, and
Webber
,
M. E.
,
2010
, “
Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021003
.
6.
Mori
,
Y.
,
Masutani
,
S. M.
, and
Nihous
,
G. C.
,
1992
, “
Pre-Combustion Removal of Carbon Dioxide From Natural Gas Power Plants and the Transition to Hydrogen Energy Systems
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
221
226
.
7.
Field
,
C. B.
, and
Raupach
,
M. R.
,
2004
,
The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World
,”
Island Press
,
Washington, DC
.
8.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.
9.
Rosenthal
,
D. H.
,
Edmonds
,
J. A.
,
Richards
,
K. R.
, and
Wise
,
M. A.
,
1993
, “
Stabilizing U.S. Net Carbon Emissions by Planting Trees
,”
Energy Convers. Manage.
,
34
(
9–11
), pp.
881
887
.
10.
Fujii
,
Y.
, and
Yamaji
,
K.
,
1998
, “
Assessment of Technological Options in the Global Energy System for Limiting the Atmospheric CO2 Concentration
,”
Environ. Econ. Policy Stud.
,
1
(
2
), pp.
113
139
.
11.
Ichinohe
,
M.
, and
Endo
,
E.
,
2006
, “
Analysis of the Vehicle Mix in the Passenger-Car Sector in Japan for CO2 Emissions Reduction by a MARKAL Model
,”
Appl. Energy
,
83
(
10
), pp.
1047
1061
.
12.
Crilly
,
D.
, and
Zhelev
,
T.
,
2008
, “
Emissions Targeting and Planning: An Application of CO2 Emissions Pinch Analysis (CEPA) to the Irish Electricity Generation Sector
,”
Energy
,
33
(
10
), pp.
1498
1507
.
13.
Cai
,
Y. P.
,
Huang
,
G. H.
,
Yang
,
Z. F.
,
Lin
,
Q. G.
,
Bass
,
B.
, and
Tan
,
Q.
,
2008
, “
Development of an Optimization Model for Energy Systems Planning in the Region of Waterloo
,”
Int. J. Energy Res.
,
32
(
11
), pp.
988
1005
.
14.
Heinricha
,
G.
,
Howells
,
M.
,
Bassona
,
L.
, and
Petrie
,
J.
,
2007
, “
Electricity Supply Industry Modeling for Multiple Objectives Under Demand Growth Uncertainty
,”
Energy
,
32
(
11
), pp.
2210
2229
.
15.
Facci
,
A. L.
,
Andreassi
,
L.
,
Martini
,
F.
, and
Ubertini
,
S.
,
2014
, “
Comparing Energy and Cost Optimization in Distributed Energy Systems Management
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032001
.
16.
Kwaczek
,
A.
,
Baker-Stariha
,
B. D.
,
Macrae
,
K. M.
, and
Reinsch
,
A. E.
,
1996
,
Modeling Air Emission Control Strategies for Saskatchewan
,
Canadian Energy Research Institute (CERI)
,
Calgary, Canada
.
17.
Unger
,
T.
, and
Ekvall
,
T.
,
2003
, “
Benefits From Increased Cooperation and Energy Trade Under CO2 Commitments—The Nordic Case
,”
Clim. Policy
,
3
(
3
), pp.
279
294
.
18.
Chinese
,
D.
,
Meneghetti
,
A.
, and
Nardin
,
G.
,
2005
, “
Waste-to-Energy Based Greenhouse Heating: Exploring Viability Conditions Through Optimization Models
,”
Renewable Energy
,
30
(
10
), pp.
1573
1586
.
19.
Klaassen
,
G.
, and
Riahi
,
K.
,
2007
, “
Internalizing Externalities of Electricity Generation: An Analysis With MESSAGE-MACRO
,”
Energy Policy
,
35
(
2
), pp.
815
827
.
20.
Chung
,
W. S.
,
Tohno
,
S.
, and
Shim
,
S. Y.
,
2009
, “
An Estimation of Energy and GHG Emission Intensity Caused by Energy Consumption in Korea: An Energy IO Approach
,”
Appl. Energy
,
86
(
10
), pp.
1902
1914
.
21.
Loulou
,
R.
, and
Kanudia
,
A.
,
1998
, “
The Kyoto Protocol, Inter-Provincial Cooperation, and Energy Trading: A Systems Analysis With Integrated MARKAL Models
,”
Energy Stud. Rev.
,
9
(
1
), pp.
1
23
.
22.
Loulou
,
R.
, and
Kanudia
,
A.
,
1999
, “
Minimax Regret Strategies for Greenhouse Gas Abatement: Methodology and Application
,”
Oper. Res. Lett.
,
25
(
5
), pp.
219
230
.
23.
Kanudia
,
A.
, and
Loulou
,
R.
,
1998
, “
Robust Responses to Climate Change Via Stochastic MARKAL: The Case of Quebec
,”
Eur. J. Oper. Res.
,
106
(
1
), pp.
15
30
.
24.
Spangardt
,
G.
,
Lucht
,
M.
, and
Handschin
,
E.
,
2006
, “
Applications for Stochastic Optimization in the Power Industry
,”
Electr. Eng.
,
88
(
3
), pp.
177
182
.
25.
Li
,
Y. P.
,
Huang
,
G. H.
,
Chen
,
X.
, and
Cheng
,
S. Y.
,
2009
, “
Interval-Parameter Robust Minimax-Regret Programming and Its Application to Energy and Environmental Systems Planning
,”
Energy Sources
,
4
(
3
), pp.
278
294
.
26.
Chen
,
W. T.
,
Li
,
Y. P.
,
Huang
,
G. H.
,
Chen
,
X.
, and
Li
,
Y. F.
,
2010
, “
A Two-Stage Inexact-Stochastic Programming Model for Planning Carbon Dioxide Emission Trading Under Uncertainty
,”
Appl. Energy
,
87
(
3
), pp.
1033
1047
.
27.
Aghaei
,
J.
, and
Amjady
,
N.
,
2012
, “
A Scenario-Based Multiobjective Operation of Electricity Markets Enhancing Transient Stability
,”
Int. J. Electr. Power Energy Syst.
,
35
(
1
), pp.
112
122
.
28.
Ganguly
,
S.
,
Sahoo
,
N. C.
, and
Das
,
D.
,
2013
, “
Multi-Objective Planning of Electrical Distribution Systems Using Dynamic Programming
,”
Int. J. Electr. Power Energy Syst.
,
46
, pp.
65
78
.
29.
Guo
,
P.
,
Huang
,
G. H.
,
He
,
L.
, and
Cai
,
Y. P.
,
2008
, “
An Inexact Chance-Constraint Semi-Infinite Programming Approach for Energy Management System Under Uncertainty
,”
Energy Sources
,
30
(
14
), pp.
1345
1366
.
30.
Mirzaesmaeeli
,
H.
,
Elkamel
,
A.
,
Douglasa
,
P. L.
,
Croiseta
,
E.
, and
Guptab
,
M.
,
2010
, “
A Multi-Period Optimization Model for Energy Planning With CO2 Emission Consideration
,”
J. Environ. Manage.
,
91
(
5
), pp.
1063
1070
.
31.
Unsihuay-Vilaa
,
C.
,
Marangon-Limab
,
J. W.
,
Zambroni de Souzab
,
A. C.
, and
Perez-Arriagac
,
I. J.
,
2011
, “
Multistage Expansion Planning of Generation and Interconnections With Sustainable Energy Development Criteria: A Multiobjective Model
,”
Int. J. Electr. Power Energy Syst.
,
33
(
2
), pp.
258
270
.
32.
Loucks
,
D. P.
,
Stendiger
,
J. R.
, and
Hait
,
D. A.
,
1981
,
Water Resources Planning Systems Planning and Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
, p.
55
.
33.
Birge
,
J. R.
, and
Louveaux
,
F. V.
,
1988
, “
A Multicut Algorithm for Two-Stage Stochastic Linear Programs
,”
Eur. J. Oper. Res.
,
34
(
3
), pp.
384
392
.
34.
Birge
,
J. R.
, and
Louveaux
,
F. V.
,
1997
,
Introduction to Stochastic Programming
,
Springer
,
New York
.
35.
Paraskevopoulos
,
D.
,
Karakitsos
,
E.
, and
Rustem
,
B.
,
1991
, “
Robust Capacity Planning Under Uncertainty
,”
Manage. Sci.
,
37
(
7
), pp.
787
800
.
36.
Malcolm
,
S. A.
, and
Zenios
,
S. A.
,
1994
, “
Robust Optimization for Power Systems Capacity Expansion Under Uncertainty
,”
J. Oper. Res. Soc.
,
45
(
9
), pp.
1040
1049
.
37.
Escudero
,
L. F.
,
Kamesam
,
P. V.
,
King
,
A. J.
, and
Wets
,
R. J.-B.
,
1993
, “
Production Planning Via Scenario Modeling
,”
Ann. Oper. Res.
,
43
(
6
), pp.
309
335
.
38.
Mulvey
,
J. M.
, and
Ruszczyński
,
A.
,
1995
, “
A New Scenario Decomposition Method for Large-Scale Stochastic Optimization
,”
Oper. Res.
,
43
(
3
), pp.
477
490
.
39.
Mulvey
,
J. M.
,
Vanderbei
,
R. J.
, and
Zenios
,
S. A.
,
1995
, “
Robust Optimization of Large-Scale Systems
,”
Oper. Res.
,
43
(
2
), pp.
264
281
.
40.
Soteriou
,
A. C.
, and
Chase
,
R. B.
,
2000
, “
A Robust Optimization Approach for Improving Service Quality
,”
Manuf. Serv. Oper. Manage.
,
2
(
3
), pp.
264
286
.
41.
Yu
,
C.-S.
, and
Li
,
H.
,
2000
, “
A Robust Optimization Model for Stochastic Logistic Problems
,”
Int. J. Prod. Econ.
,
64
(
1–3
), pp.
385
397
.
42.
Yeomans
,
J. S.
,
Huang
,
G. H.
, and
Yoogalingam
,
R.
,
2003
, “
Combining Simulation With Evolutionary Algorithms for Optimal Planning Under Uncertainty: An Application to Municipal Solid Waste Management Planning in the Regional Municipality of Hamilton-Wentworth
,”
J. Environ. Inf.
,
2
(
1
), pp.
11
30
.
43.
Huang
,
G. H.
, and
Loucks
,
D. P.
,
2003
, “
An Inexact Two-Stage Stochastic Programming Model for Water Resources Management Under Uncertainty
,”
Civ. Eng. Environ. Syst.
,
17
(
2
), pp.
95
118
.
44.
Li
,
Y. P.
,
Huang
,
G. H.
, and
Nie
,
S. L.
,
2006
, “
An Interval-Parameter Multi-Stage Stochastic Programming Model for Water Resources Management Under Uncertainty
,”
Adv. Water Resour.
,
29
(
5
), pp.
776
789
.
45.
Xie
,
Y. L.
,
Li
,
Y. P.
,
Huang
,
G. H.
, and
Li
,
Y. F.
,
2010
, “
An Interval Fixed-Mix Stochastic Programming Method for Greenhouse Gas Mitigation in Energy Systems Under Uncertainty
,”
Energy
,
35
(
12
), pp.
4627
4644
.
You do not currently have access to this content.