The performance enhancements and modeling of the gas turbine (GT), together with the combined cycle gas turbine (CCGT) power plant, are described in this study. The thermal analysis has proposed intercooler–reheated-GT (IHGT) configuration of the CCGT system, as well as the development of a simulation code and integrated model for exploiting the CCGT power plants performance, using the matlab code. The validation of a heavy-duty CCGT power plants performance is done through real power plants, namely, MARAFIQ CCGT plants in Saudi Arabia with satisfactory results. The results from this simulation show that the higher thermal efficiency of 56% MW, while high power output of 1640 MW, occurred in IHGT combined cycle plants (IHGTCC), having an optimal turbine inlet temperature about 1900 K. Furthermore, the CCGT system proposed in the study has improved power output by 94%. The results of optimization show that the IHGTCC has optimum power of 1860 MW and thermal efficiency of 59%. Therefore, the ambient temperatures and operation conditions of the CCGT strongly affect their performance. The optimum level of power and efficiency is seen at high turbine inlet temperatures and isentropic turbine efficiency. Thus, it can be understood that the models developed in this study are useful tools for estimating the CCGT power plant's performance.

References

References
1.
Matteo
,
M.
,
Andrea
,
T.
, and
Andrea
,
L.
,
2013
, “
Superimposition of Elementary Thermodynamic Cycles and Separation of the Heat Transfer Section in Energy Systems Analysis
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
021602
.10.1115/1.4023099
2.
Khaliq
,
A.
, and
Choudhary
,
K.
,
2006
, “
Thermodynamic Performance Assessment of an Indirect Intercooled Reheat Regenerative Gas Turbine Cycle With Inlet Air Cooling and Evaporative Aftercooling of the Compressor Discharge
,”
Int. J. Energy Res.
,
30
(
15
), pp.
1295
1312
.10.1002/er.1221
3.
Bassily
,
A. M.
,
2001
, “
Performance Improvements of the Intercooled Reheat Regenerative Gas Turbine Cycles Using Indirect Evaporative Cooling of the Inlet Air and Evaporative Cooling of the Compressor Discharge
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
5
), pp.
545
557
.10.1243/0957650011538794
4.
Dellenback
,
P. A.
,
2002
, “
Improved Gas Turbine Efficiency Through Alternative Regenerator Configuration
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
441
446
.10.1115/1.1451843
5.
Bhargava
,
R.
, and
Meher-Homji
,
C. B.
,
2005
, “
Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
145
158
.10.1115/1.1712980
6.
Sheng
,
L.
,
Hongguang
,
J.
,
Kathryn
,
A. M.
,
Kathryn
,
S.
, and
Geoff
,
S.
,
2015
, “
IGCC Precombustion CO2 Capture Using K2CO3 Solvent and Utilizing the Intercooling Heat Recovered From CO2 Compressors for CO2 Regeneration
,”
ASME J. Energy Res. Technol.
,
137
(
4
), p.
042002
.10.1115/1.4029964
7.
Elias
,
P. G.
,
2015
, “
Energy Conservation Education: Major Considerations
,”
ASME J. Energy Res. Technol.
,
137
(
2
), p.
021002
.10.1115/1.4026378
8.
Khaliq
,
A.
, and
Kaushik
,
S. C.
,
2004
, “
Thermodynamic Performance Evaluation of Combustion Gas Turbine Cogeneration System With Reheat
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1785
1795
.10.1016/j.applthermaleng.2003.12.013
9.
Woudstra
,
N.
,
Woudstra
,
T.
,
Pirone
,
A.
, and
Stelt
,
T.
,
2010
, “
Thermodynamic Evaluation of Combined Cycle Plants
,”
Energy Convers. Manage.
,
51
(
2
), pp.
1099
1110
.10.1016/j.enconman.2009.12.016
10.
Jeremiah
,
P.
, and
Yucheng
,
L.
,
2014
, “
Power Absorption Modeling and Optimization of a Point Absorbing Wave Energy Converter Using Numerical Method
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
021207
.10.1115/1.4027409
11.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
021601
.10.1115/1.4023098
12.
Atmaca
,
M.
,
2011
, “
Efficiency Analysis of Combined Cogeneration Systems With Steam and Gas Turbines
,”
Energy Sources, Part A
,
33
(
4
), pp.
360
369
.10.1080/15567031003741434
13.
Bassily
,
A. M.
,
2008
, “
Enhancing the Efficiency and Power of the Triple-Pressure Reheat Combined Cycle by Means of Gas Reheat, Gas Recuperation, and Reduction of the Irreversibility in the Heat Recovery Steam Generator
,”
Appl. Energy
,
85
(
12
), pp.
1141
1162
.10.1016/j.apenergy.2008.02.017
14.
Sanjay
,
Y.
,
Singh
,
O.
, and
Prasad
,
B. N.
,
2007
, “
Energy and Exergy Analysis of Steam Cooled Reheat Gas–Steam Combined Cycle
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2779
2790
.10.1016/j.applthermaleng.2007.03.011
15.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2014
, “
Effective Parameters on Performance of Multipressure Combined Cycle Power Plants
,”
Adv. Mech. Eng.
,
2014
, p.
781503
.10.1155/2014/781503
16.
Washington
,
O. I. B.
,
João
,
R. B.
, and
Luiz
,
A. H. N.
,
2012
, “
Operation Analysis and Thermoeconomic Evaluation of a Cogeneration Power Plant Operating as a Self-Generator in the Ecuadorian Electrical Market and Sugar Industry
,”
ASME J. Energy Res. Technol.
,
134
(
4
), p.
044501
.10.1115/1.4007086
17.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2014
, “
Effect of the Compression Ratio on the Performance of Different Strategies of the Gas Turbine
,”
Int. J. Automot. Mech. Eng.
,
9
, pp.
1747
1757
.10.15282/ijame.9.2013.23.0145
18.
Ibrahim
,
T. K.
,
Rahman
,
M. M.
, and
Abdalla
,
A. N.
,
2010
, “
Study on the Effective Parameter of Gas Turbine Model With Intercooled Compression Process
,”
Sci. Res. Essays
,
5
(
23
), pp.
3760
3770
.
19.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2013
, “
Study on Effective Parameter of the Triple-Pressure Reheat Combined Cycle Performance
,”
Therm. Sci.
,
17
(
2
), pp.
497
508
.10.2298/TSCI111016143I
20.
Gian
,
P. B.
, and
Elias
,
P. G.
,
2015
, “
What is a Simple System?
ASME J. Energy Res. Technol.
,
137
(
2
), p.
021007
.10.1115/1.4026383
21.
Erdem
,
H. H.
, and
Sevilgen
,
S. H.
,
2006
, “
Case Study: Effect of Ambient Temperature on the Electricity Production and Fuel Consumption of a Simple Cycle Gas Turbine in Turkey
,”
Appl. Therm. Eng.
,
26
(
2
), pp.
320
326
.10.1016/j.applthermaleng.2005.08.002
22.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2012
, “
Parametric Simulation of Triple-Pressure Reheat Combined Cycle: A Case Study
,”
Adv. Sci. Lett.
,
13
(
1
), pp.
263
268
.10.1166/asl.2012.3844
23.
Jang
,
J. S.
,
1993
, “
ANFIS: Adaptive Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
2
), pp.
665
685
.10.1109/21.256541
24.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
021204
.10.1115/1.4026202
25.
Zhu
,
Y.
, and
Frey
,
H. C.
,
2007
, “
Simplified Performance Model of Gas Turbine Combined Cycle Systems
,”
J. Energy Eng.
,
133
(
2
), pp.
82
90
.10.1061/(ASCE)0733-9402(2007)133:2(82)
26.
Sa
,
A. D.
, and
Al Zubaidy
,
S.
,
2011
, “
Gas Turbine Performance at Varying Ambient Temperature
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2735
2739
.10.1016/j.applthermaleng.2011.04.045
27.
Bassily
,
A. M.
,
2008
, “
Analysis and Cost Optimization of the Triple-Pressure Steam-Reheat Gas-Reheat Gas-Recuperated Combined Power Cycle
,”
Int. J. Energy Res.
,
32
(
2
), pp.
116
134
.10.1002/er.1338
28.
Kumar
,
P.
,
2010
, “
Optimization of Gas Turbine Cycle Using Optimization Technique
,” Master's thesis, Mechanical Engineering Department, Thapar University, Patiala, India.
29.
Joseph
,
H. K.
,
Elias
,
P. G.
, and
George
,
N. H.
,
2015
, “
The Fuel Shortage and Thermodynamics—The Entropy Crisis
,”
ASME J. Energy Res. Technol.
,
137
(
2
), p.
021001
.10.1115/1.4026377
30.
Carapellucci
,
R.
, and
Milazzo
,
A.
,
2005
, “
Thermodynamic Optimization of a Reheat Chemically Recuperated Gas Turbine
,”
Energy Convers. Manage.
,
46
(
18–19
), pp.
2936
2953
.10.1016/j.enconman.2005.02.007
You do not currently have access to this content.