Use of wind turbines is rapidly growing because of environmental impacts and daily increase in energy cost. Therefore, improving the wind turbines' characteristics is an important issue in this regard. This study has two objectives: one is investigating the aerodynamic performance of wind turbine blades and the other is developing an efficient approach for shape optimization of blades. The numerical solver of flow field was validated by phase VI rotor as a case study. First, flow field around the wind turbine blades was simulated using computational flow dynamics (CFD) and blade element momentum (BEM) methods, then obtained results were validated by available experimental data to show an appropriate conformity. Then for yielding the optimal answer, a shape optimization algorithm was used based on artificial bee colony (ABC) coupled by artificial neural networks (ANNs) as an approximate model. Effect of most important parameters in wind turbine, such as twist angle, chord line, and pitch angle, was changed till achieving the best performance. The flow characteristics of optimized and initial geometries were compared. The results of global optimization showed a value of 8.58% increase for output power. By using pitch power regulate, the maximum power was shifted to higher wind speed and results in a steady power for all work points.

References

1.
Ribeiro
,
A. F. P.
,
Awruch
,
A. M.
, and
Gomes
,
H. M.
,
2012
, “
An Airfoil Optimization Technique for Wind Turbines
,”
Appl. Math. Modell
,
36
(
10
), pp.
4898
4907
.
2.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.
3.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2004
, “
Hybrid Genetic Algorithms and Artificial Neural Networks for Complex Design Optimization in CFD
,”
Int. J. Numer. Methods Fluids
,
44
(
11
), pp.
1257
1278
.
4.
Cinnella
,
P.
, and
Congedo
,
P.
,
2008
, “
Optimal Airfoil Shapes for Viscous Transonic Flows of Bethe–Zel'dovich–Thompson Fluids
,”
Comput. Fluids
,
37
(
3
), pp.
250
264
.
5.
Hansen
,
M. O.
,
2008
, “
Aerodynamics of Wind Turbines
,”
Earthscan
,
Sterling, VA
.
6.
Elfarra
,
M. A.
,
Sezer-Uzol
,
N.
, and
Akmandor
,
I. S.
,
2014
, “
NREL VI Rotor Blade: Numerical Investigation and Winglet Design and Optimization Using CFD
,”
Wind Energy
,
17
(
4
), pp.
605
626
.
7.
Kocurek
,
D.
,
1987
, “
Lifting Surface Performance Analysis for Horizontal Axis Wind Turbines
,” Solar Energy Research Institute, Golden, CO.
8.
Moshfeghi
,
M.
,
Song
,
Y. J.
, and
Xie
,
Y. H.
,
2012
, “
Effects of Near-Wall Grid Spacing on SST-K-ω Model Using NREL Phase VI Horizontal Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
94
105
.
9.
Earl
,
D.
,
Dam
,
C. v.
, and
Shannon
,
H.
,
1999
, “
Navier–Stokes Simulations of the NREL Combined Experiment Phase II Rotor
,”
AIAA
Paper No. 99-0037.
10.
Sørensen
,
N. N.
,
2009
, “
CFD Modelling of Laminar-Turbulent Transition for Airfoils and Rotors Using the γ − Model
,”
Wind Energy
,
12
(
8
), pp.
715
733
.
11.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2013
, “
Wind Turbine CFD Modeling Using a Correlation-Based Transitional Model
,”
Renewable Energy
,
52
, pp.
31
39
.
12.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
,
17
(
3
), pp.
461
481
.
13.
Mo
,
J.-O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
, and
Lee
,
Y.-H.
,
2013
, “
Large Eddy Simulation of the Wind Turbine Wake Characteristics in the Numerical Wind Tunnel Model
,”
J. Wind Eng. Ind. Aerodyn.
,
112
, pp.
11
24
.
14.
Tang
,
Z.
,
Periaux
,
J.
,
Bugeda
,
G.
, and
Onate
,
E.
,
2010
, “
Lift Maximization With Uncertainties for the Optimization of High‐Lift Devices
,”
Int. J. Numer. Methods Fluids
,
64
(
2
), pp.
119
135
.
15.
Ghatage
,
S. V.
, and
Joshi
,
J. B.
,
2012
, “
Optimisation of Vertical Axis Wind Turbine: CFD Simulations and Experimental Measurements
,”
Can. J. Chem. Eng.
,
90
(
5
), pp.
1186
1201
.
16.
Døssing
,
M.
,
Madsen
,
H. A.
, and
Bak
,
C.
,
2012
, “
Aerodynamic Optimization of Wind Turbine Rotors Using a Blade Element Momentum Method With Corrections for Wake Rotation and Expansion
,”
Wind Energy
,
15
(
4
), pp.
563
574
.
17.
Xudong
,
W.
,
Shen
,
W. Z.
,
Zhu
,
W. J.
,
Sørensen
,
J. N.
, and
Jin
,
C.
,
2009
, “
Shape Optimization of Wind Turbine Blades
,”
Wind Energy
,
12
(
8
), pp.
781
803
.
18.
Sharifi
,
A.
, and
Nobari
,
M.
,
2013
, “
Prediction of Optimum Section Pitch Angle Distribution Along Wind Turbine Blades
,”
Energy Convers. Manage.
,
67
, pp.
342
350
.
19.
Derakhshan
,
S.
,
Pourmahdavi
,
M.
,
Abdolahnejad
,
E.
,
Reihani
,
A.
, and
Ojaghi
,
A.
,
2013
, “
Numerical Shape Optimization of a Centrifugal Pump Impeller Using Artificial Bee Colony Algorithm
,”
Comput. Fluids
,
81
, pp.
145
151
.
20.
Derakhshan
,
S.
,
Mohammadi
,
B.
, and
Nourbakhsh
,
A.
,
2010
, “
The Comparison of Incomplete Sensitivities and Genetic Algorithms Applications in 3D Radial Turbomachinery Blade Optimization
,”
Comput. Fluids
,
39
(
10
), pp.
2022
2029
.
21.
Derakhshan
,
S.
, and
Mostafavi
,
A.
,
2011
, “
Optimization of GAMM Francis Turbine Runner
,”
World Acad. Sci. Eng. Technol.
,
59
, pp.
717
723
.
22.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2013
, “
Optimization, Numerical and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
.
23.
Karaboga
,
N.
,
2009
, “
A New Design Method Based on Artificial Bee Colony Algorithm for Digital IIR Filters
,”
J. Franklin Inst.
,
346
(
4
), pp.
328
348
.
24.
Karaboga
,
D.
, and
Akay
,
B.
,
2011
, “
A Modified Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Problems
,”
Appl. Soft Comput.
,
11
(
3
), pp.
3021
3031
.
25.
Elia
,
S.
,
Gasulla
,
M.
, and
Francesco
,
A.
,
2012
, “
Optimization in Distributing Wind Generators on Different Places for Energy Demand Tracking
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041202
.
26.
Yelmule
,
M. M.
, and
VSJ
,
E. A.
,
2013
, “
CFD Predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind Tunnel
,”
Int. J. Renewable Energy Res.
,
3
(
2
), pp.
261
269
.
27.
Selig
,
M. S.
, and
Coverstone-Carroll
,
V. L.
,
1996
, “
Application of a Genetic Algorithm to Wind Turbine Design
,”
ASME J. Energy Resour. Technol.
118
(
1
), pp.
22
28
.
28.
Gorban
,
A.
,
Gorlov
,
A. M.
, and
Silantyev
,
V. M.
,
2001
, “
Limits of the Turbine Efficiency for Free Fluid Flow
,”
ASME J. Energy Resour. Technol.
123
(
4
), pp.
311
317
.
29.
Giguere
,
P.
, and
Selig
,
M.
,
1999
, “
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/SR500-26173.
30.
Hand
,
M. M.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cotrell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP 500-29955.
31.
Esfahanian
,
V.
,
Salavati Pour
,
A.
,
Harsini
,
I.
,
Haghani
,
A.
,
Pasandeh
,
R.
,
Shahbazi
,
A.
, and
Ahmadid
,
G.
,
2013
, “
Numerical Analysis of Flow Field Around NREL Phase II Wind Turbine by a Hybrid CFD/BEM Method
,”
J. Wind Eng. Ind. Aerodyn.
,
120
, pp.
29
36
.
32.
Derakhsahan
,
S.
, and
Tavazziani
,
A.
,
2015
, “
Study of Wind Turbine Aerodynamic Performance Using Numerical Methods
,”
J. Clean Energy Technol.
,
3
(
2
), pp.
83
90
.
33.
matlab, Artificial Neural Network Toolbox—Matlab Documentation.
34.
Karaboga
,
D.
,
2005
, “
An Idea Based on Honey Bee Swarm for Numerical Optimization
,” Computer Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey, Technical Report-tr06.
35.
Karaboga
,
D.
, and
Ozturk
,
C.
,
2009
, “
Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification
,”
Neural Network World
,
19
(
3
), pp.
279
292
.
You do not currently have access to this content.