The impacts of swells on the atmospheric boundary layer (ABL) flows and by this on the standalone offshore wind turbine (WT) performance are investigated by using large eddy simulations (LES) and actuator-line techniques. At high swell to wind speed ratio, the swell-induced stress reduces the total wind stress resulting in higher wind velocity, less wind shear, and lower turbulence intensity level. These effects increase by increasing swell to wind speed ratio (C/U) and/or swell steepness. Moreover, for the same hub-height wind speed (Uhub), the presence of swells increases the turbine power extraction rate by about 3% and 8.4% for C/Uhub = 1.53 and 2.17, respectively.

References

References
1.
Sanderse
,
B.
,
van der Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
2.
Vermeer
,
J.
,
Sørensen
,
N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
3.
Sørensen
,
N.
,
2011
, “
Aerodynamic Aspects of Wind Energy Conversion
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
427
448
.
4.
Chamorro
,
L.
, and
Porté-Agel
,
F.
,
2009
, “
A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects
,”
Bound. Layer Meteorol.
,
132
(
1
), pp.
129
149
.
5.
Charnock
,
H.
,
1955
, “
Wind Stress on Water Surface
,”
Q. J. R. Meteorol. Soc.
,
81
(
350
), pp.
639
640
.
6.
Lange
,
B.
,
Larsen
,
S.
,
Højstrup
,
J.
, and
Barthelmie
,
R.
,
2004
, “
Importance of Thermal Effects and Sea Surface Roughness for Offshore Wind Resource Assessment
,”
J. Wind. Eng. Ind. Aerodyn.
,
92
(
11
), pp.
959
988
.
7.
Frank
,
P.
,
Larsen
,
E.
, and
Højstrup
,
J.
,
2000
, “
Simulated Wind Power Off-Shore Using Different Parameterizations for the Sea Surface Roughness
,”
Wind Energy
,
3
(
2
), pp.
67
79
.
8.
Ardhuin
,
F.
,
Chapron
,
B.
, and
Collard
,
F.
,
2009
, “
Observation of Swell Dissipation Across Oceans
,”
Geophys. Res. Lett.
,
36
(
6
), pp.
1
5
.
9.
Smedman
,
A.
,
Högström
,
U.
,
Bergström
,
H.
,
Rutgersson
,
A.
,
Kahma
,
K. K.
, and
Pettersson
,
H.
,
1999
, “
A Case-Study of Air–Sea Interaction During Swell Conditions
,”
J. Geophys. Res.
,
104
(
C11
), pp.
25833
25851
.
10.
Högström
,
U.
,
Smedman
,
A.
, and
Bergström
,
H.
,
1999
, “
A Case Study of Two-Dimensional Stratified Turbulence
,”
J. Atmos. Sci.
,
56
(
7
), pp.
959
976
.
11.
Högström
,
U.
,
Smedman
,
A.
,
Sahleé
,
E.
,
Drennan
,
W. M.
,
Kahama
,
K. K.
,
Pettersson
,
H.
, and
Zhang
,
F.
,
2009
, “
The Atmospheric Boundary Layer During Swell: A Field Study and Interpretation of the Turbulent Kinetic Energy Budget for High Wave Ages
,”
J. Atmos. Sci.
,
66
(
9
), pp.
2764
2779
.
12.
Grachev
,
A.
, and
Fairall
,
C.
,
2001
, “
Upward Momentum Transfer in the Marine Boundary Layer
,”
J. Phys. Oceanogr.
,
31
(
7
), pp.
1698
1711
.
13.
Smedman
,
A.
,
Guo-Larsén
,
X.
,
Högström
,
U.
,
Kahama
,
K. K.
, and
Pettersson
,
H.
,
2003
, “
The Effect of Sea State on the Monmentum Exchange Over the Sea During Neutral Conditions
,”
J. Geophys. Res.
,
108
(
C11
), p.
3367
.
14.
Sullivan
,
P. P.
,
Edson
,
J. B.
,
Hristov
,
T.
, and
McWilliams
,
J. C.
,
2008
, “
Large Eddy Simulations and Observations of Atmospheric Marine Boundary Layer Above Non-Equilibrium Surface Waves
,”
J. Atmos. Sci.
,
65
(4), pp.
1225
1245
.
15.
Nilsson
,
E. O.
,
Rutgersson
,
A.
,
Smedman
,
A.
, and
Sullivan
,
P. P.
,
2012
, “
Convective Boundary-Layer Structure in the Presence of Wind-Following Swell
,”
Q. J. R. Meteorol. Soc.
,
138
(667), pp.
1476
1489
.
16.
Kalvig
,
S.
,
Manger
,
E.
,
Hjertager
,
B. H.
, and
Jakobsen
,
J. B.
,
2014
, “
Wave Influenced Wind and the Effect on Offshore Wind Turbine Performance
,”
Energy Procedia
,
53
, pp.
202
213
.
17.
Yang
,
D.
,
Meneveau
,
C.
, and
Shen
,
L.
,
2014
, “
Large-Eddy Simulation of Offshore Wind Farm
,”
Phys. Fluids
,
26
(2), p.
025101
.
18.
Meneveau
,
C.
,
Lund
,
T.
, and
Cabot
,
W.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
, pp.
353
385
.
19.
Sørensen
,
J.
, and
Shen
,
W.
,
2002
, “
Numerical Modelling of Wind Turbine Wakes
,”
J. Fluid. Eng.
,
124
(
2
), pp.
393
399
.
20.
Ferziger
,
J.
, and
Peric
,
M.
,
1999
,
Computational Methods for Fluid Dynamics
,
2nd ed.
,
Springer
,
Berlin
.
21.
Karimirad
,
M.
, and
Moan
,
T.
,
2012
, “
Wave- and Wind-Induced Dynamic Response of a Spar-Type Offshore Wind Turbine
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
138
(
1
), pp.
9
20
.
22.
Jasak
,
H.
, and
Tukovic
,
Z.
,
2006
, “
Automatic Mesh Motion for the Unstructured Finite Volume Method
,”
Trans. FAMENA
,
30
(
2
), pp.
1
20
.
23.
Mason
,
P.
, and
Callen
,
N.
,
1986
, “
On the Magnitude of the Subgrid-Scale Eddy Coefficient in Large-Eddy Simulations of Turbulent Channel Flow
,”
J. Fluid Mech.
,
162
, pp.
439
462
.
24.
Sullivan
,
P. P.
, and
McWilliams
,
J. C.
,
2010
, “
Dynamics of Winds and Currents Coupled to Surface Waves
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
19
42
.
25.
Emeis
,
S.
,
2013
,
Atmospheric Physics for Wind Power Generation
,
Springer
,
New York
, Chap. 5.
26.
Smedman
,
A.
,
Högström
,
U.
,
Sahleé
,
E.
,
Drennan
,
W. M.
,
Kahama
,
K. K.
,
Pettersson
,
H.
, and
Zhang
,
F.
,
2009
, “
Observational Study of Marine Atmospheric Boundary Layer Characteristics During Swell
,”
J. Atmos. Sci.
,
66
(
9
), pp.
2747
2763
.
27.
Hanley
,
K.
, and
Belcher
,
S.
,
2008
, “
Wave-Driven Wind Jets in the Marine Atmospheric Boundary Layer
,”
J. Atmos. Sci.
,
65
(
8
), pp.
2646
2660
.
28.
Smedman
,
A.
,
Tjernström
,
M.
, and
Högström
,
U.
,
1994
, “
The Near Neutral Marine Atmospheric Boundary Layer With No Surface Shearing Stress: A Case Study
,”
J. Atmos. Sci.
,
51
(
23
), pp.
3399
3411
.
29.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of A 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Technical Report, Golden, CO, No. NREL/TP-500-38060.
30.
Churchfield
,
M. J.
,
2011
, “
Wind Energy/Atmospheric Boundary Layer Tools and Tutorials
,”
6th OpenFOAM Workshop
, Pennsylvania State University, State College, PA, June 13–16.
31.
Churchfield
,
M. J.
,
Moriarty
,
P. J.
,
Vijayakumar
,
G.
, and
Brasseur
,
J.
,
2010
, “
Wind Energy-Related Atmospheric Boundary-Layer Large-Eddy Simulation Using OpenFOAM
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-500-48905.
32.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2014
, “
Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031003
.
33.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P. J.
,
Martínez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
A Large-Eddy Simulation of Wind-Plant Aerodynamics
,”
AIAA
Paper No. 2012-0537.
34.
Troldborg
,
N.
,
2008
, “
Actuator Line Modeling of Wind Turbine Wakes
,” Ph.D. dissertation, Technical University of Denmark, Lyngby, Denmark, http://orbit.dtu.dk/en/publications/actuator-line-modeling-of-wind-turbine-wakes%285ba63e95-7f74-4e6c-82b8-9f497315a664%29.html
35.
Lungo
,
G. V.
,
Wu
,
Y. T.
, and
Porté-Agel
,
F.
,
2013
, “
Field Measurements of Wind Turbine Wakes With Lidars
,”
J. Atmos. Oceanic Technol.
,
30
(2), pp.
274
287
.
36.
Porté-Agel
,
F.
,
Wu
,
Y. T.
,
Lu
,
H.
, and
Conzemius
,
R. J.
,
2011
, “
Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(4), pp.
154
168
.
37.
Wu
,
Y. T.
, and
Porté-Agel
,
F.
,
2011
, “
Large-Eddy Simulations of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations
,”
Bound. Layer Meteorol.
,
138
(3), pp.
345
366
.
38.
Wagner
,
R.
,
Courtney
,
M.
,
Gottschall
,
J.
, and
Lindelöw-Marsden
,
P.
,
2011
, “
Accounting for the Speed Shear in Wind Turbine Power Performance Measurement
,”
Wind Energy
,
14
(
8
), pp.
993
1004
.
39.
Wagner
,
R.
,
Antoniou
,
I.
,
Pedersen
,
S. M.
,
Courtney
,
M. S.
, and
Jørgensen
,
H. E.
,
2009
, “
The Influence of the Wind Speed Profile on Wind Turbine Performance Measurements
,”
Wind Energy
,
12
(
4
), pp.
348
362
.
You do not currently have access to this content.