This paper presents the results of a wide experimental study on an H-type vertical axis wind turbine (VAWT) carried out at the Politecnico di Milano. The experiments were carried out in a large-scale wind tunnel, where wind turbines for microgeneration can be tested in real-scale conditions. Integral torque and thrust measurements were performed, as well as detailed aerodynamic measurements to characterize the flow field generated by the turbine downstream of the rotor. The machine was tested in both a confined (closed chamber) and unconfined (open chamber) environment, to highlight the effect of wind tunnel blockage on the aerodynamics and performance of the VAWT under investigation. The experimental results, compared with the blockage correlations presently available, suggest that specific correction models should be developed for VAWTs. The experimental thrust and power curves of the turbine, derived from integral measurements, exhibit the expected trends with a peak power coefficient of about 0.28 at tip-speed ratio equal to 2.5. Flow measurements, performed in three conditions for tip speed ratio equal to 1.5, 2.5, and 3.5, show the fully three-dimensional character of the wake, especially in the tip region where a nonsymmetrical wake and tip vortex are found. The unsteady evolution of the velocity and turbulence fields further highlights the effect of aerodynamic loading on the wake unsteadiness, showing the time-dependent nature of the tip vortex and the onset of dynamic stall for tip speed ratio lower than 2.

References

References
1.
Sutherland
,
H. J.
,
Berg Dale
,
E.
, and
Ashwill
,
T. D.
,
2012
, “
A Retrospective of VAWT Technology
,” Sandia National Laboratories,
Report No.
SAND2012-0304http://energy.sandia.gov/wp/wp-content/gallery/uploads/SAND2012-0304.pdf.
2.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.10.1016/j.rser.2011.12.004
3.
IEC (International Electrotechnical Commission) Standard
,
2013
,
Wind turbines—Part 2: Small Wind Turbines
,
IEC
,
Geneva, Switzerland
.
4.
Battisti
,
L.
,
Zanne
,
L.
,
Dell'Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
G. B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.10.1115/1.4004360
5.
Chen
,
T. Y.
, and
Liou
,
L. R.
,
2011
, “
Blockage Corrections in Wind Tunnel Tests of Small Horizontal Axis Wind Turbines
,”
Elsevier Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
565
569
.10.1016/j.expthermflusci.2010.12.005
6.
Ferreira
,
C. S.
,
van Bussel
,
G. J. W.
, et al. .,
2007
, “
2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine
,” 45th AIAA Aerospace Sciences Meeting 2007, 8-11 January 2007, Reno, NV.
7.
Hofemann
,
C.
,
Ferreira
,
C. S.
, et al. .,
2008
, “
3D Stereo PIV Study of Tip Vortex Evolution on a VAWT
,”
Proceedings of the European Wind Energy Conference and Exhibition EWEC
, Brussels, European Wind Energy Association (EWEA).
8.
Ferreira
,
C. S.
,
van Kuik
,
G.
, and
van Bussel
,
G. J. W.
,
2006
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
487
497
.10.1115/1.2349550
9.
Ferreira
,
C. S.
,
van Kuik
,
G.
,
van Bussel
,
G. J. W.
, and
Scarano
,
F.
,
2009
, “
Visualization by PIV of Dynamic Stall on a Vertical Axis Wind Turbine
,”
Exp. Fluids
,
46
(
1
), pp.
97
108
.10.1007/s00348-008-0543-z
10.
Tescione
,
G.
,
Ragni
,
D.
,
He
,
C.
,
Ferreira
,
C. S.
, and
van Bussel
,
G. J. W.
,
2014
, “
Near Wake Flow Analysis of a Vertical Axis Wind Turbine by Stereoscopic Particle Image Velocimetry
,”
Renewable Energy
,
70
(October), pp.
47
61
.10.1016/j.renene.2014.02.042
11.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.10.1016/j.renene.2009.07.025
12.
Akay
,
B.
,
Ferreira
,
C. S.
,
van Bussel
,
G. J. W.
, and
Tescione
,
G.
,
2010
, “
Experimental and Numerical Investigation of the Effect of Rotor Blockage on Wake Expansion
,”
Proceedings of the 3rd EWEA Conference-Torque 2010: The Science of making Torque from Wind
, Heraklion, Crete, Greece, June 28–30, European Wind Energy Association.
13.
Glauert
,
H.
,
1933
, “
Wind Tunnel Interference on Wings, Bodies and Airserews
,” British A.R.C., R&M No. 1566.
14.
Glauert
,
H.
,
1935
, “
Airplane propellers
,”
Division L of Aerodynamic Theory
, Vol.
4
,
W. F.
Durand
, ed., pp.
169
360
,
Springer
,
New York
.
15.
Mikkelsen
,
R.
, and
Sørensen
,
J. N.
,
2002
, “
Tunnel Blockage
,”
Proceedings of the Global Windpower Conference and Modeling of Wind Exhibition
.
16.
Sørensen
,
J. N.
,
Shen
,
W. Z.
, and
Mikkelsen
,
R.
,
2006
, “
Wall Correction Model for Wind Tunnels With Open Test Section
,”
AIAA J.
,
44
(
8
), pp.
1890
1894
.
17.
International Organization for Standardization
,
2000
, “
Guide to the Expression of Uncertainty in Measurement (GUM)
,” UNI-CEI-ENV 13005:2000.
18.
Mercker
,
E.
, and
Wiedemann
,
J.
,
1996
, “
On the Correction of Interference Effects in Open Jet Wind Tunnels
,” SAE Paper No. 960671.
19.
Brochier
,
G.
,
Fraunié
,
P.
,
Beguiér
,
C.
, and
Paraschivoiu
,
I.
,
1986
, “
Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Propulsion Power
,
2
(
5
), pp.
445
449
10.2514/3.22927.
You do not currently have access to this content.