This paper presents a method for optimizing blade designs in smart rotors; the objective is to maximize power regardless of wind conditions. An extensive analysis of what is known as “smart blades,” from aeronautical solutions and helicopter rotors is provided. Moreover, trends in computational and experimental research are analyzed, an assessment and categorization of the options available for aerodynamic control surfaces are made. The study and analysis of its main components such as sensors, mechanisms of actuation, and materials are included. Advance research in this technology is presented as a potential solution for more efficient blade designs, and methods for reducing aerodynamic loads are discussed.

References

References
1.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
,
2nd ed.
,
Springer
,
Berlin, Germany
.
2.
Arun Kumar
,
K. M.
,
Strong
,
S.
,
ElGammal
,
T.
, and
Amano
,
R.
,
2015
, “
Self-Healing Tubing in Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051202
.10.1115/1.4029912
3.
Belhadj
,
J.
, and
Roboam
,
J.
,
2006
, “
Investigation of Different Methods to Control a Small Variable-Speed Wind Turbine With PMSM Drives
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
200
213
.10.1115/1.2748813
4.
Wilson
,
D. G.
,
Berg
,
D. E.
,
Lobitz
,
D. W.
, and
Zayas
,
J. R.
,
2008
, “
Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines
,”
AWEA WINDPOWER 2008 Conference & Exhibition
,
Houston, TX
, June 1–4, pp.
1
7
.
5.
Barlas
,
T. K.
, and
van Kuik
,
G. A. M.
,
2007
, “
State of the Art and Perspectives of Smart Rotor Control for Wind Turbines
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012080
.10.1088/1742-6596/75/1/012080
6.
Pechlivanoglou
,
G.
,
2012
, “
Passive and Active Flow Control Solutions for Wind Turbine Blades
,” Ph.D. thesis, Technical University of Berlin, Berlin, Germany.
7.
Barlas
,
T. K.
, and
van Kuik
,
G. A. M.
,
2010
, “
Review of State of the Art in Smart Rotor Control Research for Wind Turbines
,”
Prog. Aerosp. Sci.
,
46
(
1
), pp.
1
27
.10.1016/j.paerosci.2009.08.002
8.
Zhang
,
D.
,
Cross
,
P.
,
Ma
,
X.
, and
Li
,
W.
,
2013
, “
Improved Control of Individual Blade Pitch for Wind Turbines
,”
Sens. Actuators A
,
198
, pp.
8
14
.10.1016/j.sna.2013.04.020
9.
Hassan
,
H. M.
,
ElShafei
,
A. L.
,
Farag
,
W. A.
, and
Saad
,
M. S.
,
2012
, “
A Robust LMI-Based Pitch Controller for Large Wind Turbines
,”
Renewable Energy
,
44
(
C
), pp.
63
71
.10.1016/j.renene.2011.12.016
10.
Battisti
,
L.
,
Zanne
,
L.
,
Dell'Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.10.1115/1.4004360
11.
Feszty
,
D.
,
Gillies
,
E. A.
, and
Vezza
,
M.
,
2004
, “
Alleviation of Airfoil Dynamic Stall Moments Via Trailing-Edge-Flap Flow Control
,”
AIAA J.
,
42
(
1
), pp.
17
25
.10.2514/1.853
12.
Gerontakos
,
P.
, and
Lee
,
T.
,
2006
, “
Dynamic Stall Flow Control Via a Trailing-Edge Flap
,”
AIAA J.
,
44
(
3
), pp.
469
480
.
13.
Krzysiak
,
A.
, and
Narkiewicz
,
J.
,
2006
, “
Aerodynamic Loads on Airfoil With Trailing-Edge Flap Pitching With Different Frequencies
,”
J. Aircr.
,
43
(
2
), pp.
407
418
.10.2514/1.15597
14.
Lee
,
T.
, and
Su
,
Y. Y.
,
2011
, “
Unsteady Airfoil With a Harmonically Deflected Trailing-Edge Flap
,”
J. Fluids Struct.
,
27
(
8
), pp.
1411
1424
.10.1016/j.jfluidstructs.2011.06.008
15.
Guerrero
,
J. E.
,
2009
, “
Effect of Cambering on the Aerodynamic Performance of Heaving Airfoils
,”
J. Bionic Eng.
,
6
(
4
), pp.
398
407
.10.1016/S1672-6529(08)60134-1
16.
Miao
,
J.-M.
, and
Ho
,
M.-H.
,
2006
, “
Effect of Flexure on Aerodynamic Propulsive Efficiency of Flapping Flexible Airfoil
,”
J. Fluids Struct.
,
22
(
3
), pp.
401
419
.10.1016/j.jfluidstructs.2005.11.004
17.
Benkherouf
,
T.
,
Mekadem
,
M.
,
Oualli
,
H.
,
Hanchi
,
S.
,
Keirsbulck
,
L.
, and
Labraga
,
L.
,
2011
, “
Efficiency of an Auto-Propelled Flapping Airfoil
,”
J. Fluids Struct.
,
27
(
4
), pp.
552
566
.10.1016/j.jfluidstructs.2011.03.004
18.
Sofla
,
A. Y. N.
,
Meguid
,
S. A.
,
Tan
,
K. T.
, and
Yeo
,
W. K.
,
2010
, “
Shape Morphing of Aircraft Wing: Status and Challenges
,”
Mater. Des.
,
31
(
3
), pp.
1284
1292
.10.1016/j.matdes.2009.09.011
19.
Geissler
,
W.
,
Dietz
,
G.
, and
Mai
,
H.
,
2005
, “
Dynamic Stall on a Supercritical Airfoil
,”
Aerosp. Sci. Technol.
,
9
(
5
), pp.
390
399
.10.1016/j.ast.2005.01.012
20.
Diaconu
,
C. G.
,
Weaver
,
P. M.
, and
Mattioni
,
F.
,
2008
, “
Concepts for Morphing Airfoil Sections Using Bi-Stable Laminated Composite Structures
,”
Thin-Walled Struct.
,
46
(
6
), pp.
689
701
.10.1016/j.tws.2007.11.002
21.
Arrieta
,
A. F.
,
Bilgen
,
O.
,
Friswell
,
M. I.
, and
Ermanni
,
P.
,
2013
, “
Modelling and Configuration Control of Wing-Shaped Bi-Stable Piezoelectric Composites Under Aerodynamic Loads
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
453
461
.10.1016/j.ast.2013.05.004
22.
Aguirrebeitia
,
J.
,
Avilés
,
R.
,
Fernández
,
I.
, and
Abasolo
,
M.
,
2013
, “
Kinematical Synthesis of an Inversion of the Double Linked Fourbar for Morphing Wing Applications
,”
Front. Mech. Eng.
,
8
(
1
), pp.
17
32
.10.1007/s11465-013-0364-5
23.
Yuanyuan
,
H. E.
, and
Shijun
,
G. U. O.
,
2012
, “
Modeling and Experiment of a Morphing Wing Integrated With a Trailing Edge Control Actuation System
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
248
254
.10.3901/CJME.2012.02.248
24.
Yang
,
W. C.
,
Yang
,
J. T.
, and
Wang
,
J.
,
2012
, “
Experimental Investigation on the Quasi-Steady Flow Separation Behaviors of a Variable Camber Wing
,”
Sci. China Phys. Mech. Astron.
,
42
(
5
), pp.
531
537
10.1007/s11434-012-9917-y.
25.
Ahola
,
J.
,
Makkoneni
,
T.
,
Nevala
,
K.
, and
Istoi
,
P.
,
2009
, “
Comparison of Position Control Algorithms of Embedded Shape Memory Alloy Actuators
,”
Proceedings of the IEEE International Conference on Mechatronics
, Apr. 14–17, pp.
1
6
.
26.
Brailovski
,
V.
,
Terriault
,
P.
,
Georges
,
T.
, and
Coutu
,
D.
,
2010
, “
SMA Actuators for Morphing Wings
,”
Phys. Procedia
,
10
, pp.
197
203
.10.1016/j.phpro.2010.11.098
27.
Coutu
,
D.
,
Brailovski
,
V.
, and
Terriault
,
P.
,
2010
, “
Optimized Design of an Active Extrados Structure for an Experimental Morphing Laminar Wing
,”
Aerosp. Sci. Technol.
,
14
(
7
), pp.
451
458
.10.1016/j.ast.2010.01.009
28.
Popov
,
A. V.
,
Grigorie
,
L. T.
, and
Botez
,
R. M.
,
2010
, “
Controller Optimization in Real Time for a Morphing Wing in a Wind Tunnel
,”
J. Aircr.
,
47
(
4
), pp.
1346
1355
.10.2514/1.47431
29.
Wang
,
Q.
,
Xu
,
Z.
, and
Zhu
,
Q.
,
2013
, “
Structural Design of Morphing Trailing Edge Actuated by SMA
,”
Front. Mech. Eng.
,
8
(
3
), pp.
268
275
.10.1007/s11465-013-0261-y
30.
Sosa
,
R.
, and
Artana
,
G.
,
2006
, “
Steady Control of Laminar Separation Over Airfoils With Plasma Sheet Actuators
,”
J. Electrost.
,
64
(
7–9
), pp.
604
610
.10.1016/j.elstat.2005.10.029
31.
Fu
,
X.
,
Li
,
Y.
,
Li
,
B.
, and
Kwok
,
D. Y.
,
2009
, “
Drag Force Reduction on an Airfoil Via Glow Discharge Plasma-Based Control
,”
Eur. Phys. J.
,
171
(
1
), pp.
195
204
.10.1140/epjst/e2009-01029-3
32.
Chopra
,
I.
,
2002
, “
Review of State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
(
11
), pp.
2145
2187
.10.2514/2.1561
33.
Baxevanou
,
C. A.
,
Chaviaropoulos
,
P. K.
,
Voutsinas
,
S. G.
, and
Vlachos
,
N. S.
,
2008
, “
Evaluation Study of a Navier–Stokes CFD Aeroelastic Model of Wind Turbine Airfoils in Classical Flutter
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1425
1443
.10.1016/j.jweia.2008.03.009
34.
Beyene
,
A.
, and
Peffley
,
J.
,
2007
, “
A Morphing Blade for Wave and Wind Energy Conversion
,” OCEANS Europe, June 18–21, pp.
1
6
.
35.
MacPhee
,
D.
, and
Beyene
,
A.
,
2011
, “
A Flexible Turbine Blade for Passive Blade Pitch Control in Wind Turbines
,”
Proceedings of the Power Engineering and Automation Conference (PEAM)
, Vol.
1
, Sept. 8–9, pp.
196
199
.
36.
Huang
,
D.
, and
Wu
,
G.
,
2013
, “
Preliminary Study on the Aerodynamic Characteristics of an Adaptive Reconfigurable Airfoil
,”
Aerosp. Sci. Technol.
,
27
(
1
), pp.
44
48
.10.1016/j.ast.2012.06.005
37.
Supeni
,
E. E.
,
Epaarachchi
,
J. A.
,
Islam
,
M. M.
, and
Lau
,
K. T.
,
2012
, “
Development of Smart Wind Turbine Blades
,”
Proceedings of the 8th Asian-Australasian Conference on Composite Materials
, Nov. 6–8, pp.
1
6
.
38.
Qiao
,
Y.
,
Han
,
J.
,
Zhang
,
C.
, and
Chen
,
J.
,
2012
, “
Modeling Smart Structure of Wind Turbine Blade
,”
Appl. Compos. Mater.
,
19
(
3–4
), pp.
491
498
.10.1007/s10443-011-9210-2
39.
Nelson
,
R. C.
,
Corke
,
T. C.
, and
Othman
,
H.
,
2008
, “
A Smart Wind Turbine Blade Using Distributed Plasma Actuators for Improved Performance
,”
Proceedings of the 46th Aerospace Sciences Meeting
,
Reno, NV
, Jan. 7–10, pp.
1
17
.
40.
Fischer
,
J.
,
Weinzierl
,
G.
,
Wagner
,
J.
, and
Pechlivanoglou
,
G.
,
2012
, “
Development of a Flexible Trailing Edge Flap and System Integration Concept for Wind Turbine Blades
,”
Proceedings of the 1st German Wind Energy Conference DEWEK
,
Bremen, Germany
, pp.
1
4
.
41.
Lackner
,
M. A.
, and
van KuikGijs
,
A. M.
,
2010
, “
The Performance of Wind Turbine Smart Rotor Control Approaches During Extreme Loads
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011008
.10.1115/1.4000352
42.
Wilson
,
D. G.
,
Berg
,
D. E.
,
Barone
,
M. F.
,
Berg
,
J. C.
,
Resor
,
B. R.
, and
Lobitz
,
D. W.
,
2009
, “
Active Aerodynamic Blade Control Design for Load Reduction on Large Wind Turbines
,”
Proceedings of the European Wind Energy Conference & Exhibition 2009 ParcChanot
,
Marseille, France
, pp.
1
10
.
43.
Grant
,
I.
,
2005
, “
Wind Turbine Blade Analysis Using the Blade Element Momentum Method
,” Duncan University, School of Engineering, Durham University, Durham, NC.https://community.dur.ac.uk/g.l.ingram/download/wind_turbine_design.pdf
You do not currently have access to this content.