A review on icing physics, ice detection, anti-icing and de-icing techniques for wind turbines in cold climate has been performed. Typical physical properties of atmospheric icing and the corresponding meteorological parameters are presented. For computational modeling of ice accretion on turbine blades, the LEWINT code was adopted to simulate ice accretion on an aerofoil for a 2 MW wind turbine. Ice sensors and the basic requirements for ice detection on large blades are described. Besides, this paper presents the main passive and active ice mitigation techniques and their advantages and disadvantages. Scope of future work is suggested as wind turbine blades scale up.

References

References
1.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.10.1115/1.4001574
2.
Franchi
,
J. R.
, and
Mokhatab
,
S.
,
2007
, “
Energy: Technology and Directions for the Future
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
79
79
.10.1115/1.2424966
3.
Global Wind Energy Council
,
2014
, “Global Statistics,” Accessed Dec. 20, http://www.gwec.net/global-figures/graphs
4.
European Wind Energy Association
,
2014
, “
Wind Energy Scenarios for 2020
,” Report by European Wind Energy Association, Brussels.
5.
European Commission
,
2014
, “
EU Energy, Transport and GHG Emissions—Trends to 2050, Reference Scenario 2013
,” Report by European Union, Luxembourg.
6.
Ilinca
,
A.
,
2011
, “Analysis and Mitigation of Icing Effects on Wind Turbines,”
Wind Turbines
,
InTech Open Access Publisher
,
Rijeka
, Chap. IX.10.5772/15484
7.
Tammelin
,
B.
,
Cavaliere
,
M.
,
Holttinen
,
H.
,
Morgan
,
C.
,
Seifert
,
H.
, and
Säntti
,
K.
,
2000
,
Ind Energy Production in Cold Climate
,
Meteorological Publications No. 41, Finnish Meteorological Institute
,
Helsinki
.
8.
Ronsten
,
G.
,
Wallenius
,
T.
,
Hulkkonen
,
M.
,
Baring-Gould
,
I.
,
Cattin
,
R.
,
Durstewitz
,
M.
,
Krenn
,
A.
,
Laakso
,
T.
,
Lacroix
,
A.
,
Tallhaug
,
L.
,
Byrkjedal
,
O.
, and
Peltola
,
E.
,
2012
,
State-Of-The-Art of Wind Energy in Cold Climates
,
IEA Wind Task XIX
, VTT, Finland.
9.
Baring-Gould
,
I.
,
Cattin
,
R.
,
Durstewitz
,
M.
,
Hulkkonen
,
M.
,
Krenn
,
A.
,
Laakso
,
T.
,
Lacroix
,
A.
,
Peltola
,
E.
,
Ronsten
,
G.
,
Tallhaug
,
L.
, and
Wallenius
,
T.
,
2012
,
IEA Wind Recommended Practice 13: Wind Energy in Cold Climate
, I
EA Wind Task XIX
, VTT, Finland.
10.
Dalili
,
N.
,
Edrisy
,
A.
, and
Carriveau
,
R.
,
2009
, “
A Review of Surface Engineering Issues Critical to Wind Turbine Performance
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
428
438
.10.1016/j.rser.2007.11.009
11.
Laakso
,
T.
,
Baring-Gould
,
I.
,
Durstewitz
,
M.
,
Horbaty
,
R.
,
Lacroix
,
A.
,
Peltola
,
E.
,
Ronsten
,
G.
,
Tallhaug
,
L.
, and
Wallenius
,
T.
,
2003
,
State-Of-The-Art of Wind Energy in Cold Climates
,
IEA Wind Annex XIX
, VTT, Finland.
12.
ISO-12494
,
2001
,
Atmospheric Icing of Structures
,
ISO Copyright Office
,
Geneva
.
13.
Makkonen
,
L.
,
2000
, “
Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures
,”
Philos. Trans. R. Soc., A
,
358
(1776), pp.
2913
2939
.10.1098/rsta.2000.0690
14.
Messinger
,
B. L.
,
1953
, “
Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed
,”
J. Aeronaut. Sci.
,
20
(
1
), pp.
29
42
.10.2514/8.2520
15.
Poots
,
G. I.
,
1996
,
Ice and Snow Accretion on Structures
,
Research Studies Press
,
Hertfordshire
.
16.
Habashi
,
W. G.
,
Veillard
,
X.
, and
Baruzzi
,
G. S.
,
2011
, “
Icing Simulation in Multistage Jet Engines
,”
J. Propul. Power
,
27
(
6
), pp.
1231
1237
.10.2514/1.B34060
17.
Lee
,
S.
, and
Loth
,
E.
,
2008
, “
Simulation of Icing on a Cascade of Stator Blades
,”
J. Propul. Power
,
24
(
6
), pp.
1309
1316
.10.2514/1.37810
18.
Rindeskar
,
E.
,
2010
, “
Modelling of Icing for Wind Farms in Cold Climate—A Comparison Between Measured and Modelled Data for Reproducing and Predicting Ice Accretion
,” M.S. thesis, Uppsala Universitet, Uppsala.
19.
Homola
,
M. C.
,
Virk
,
M. S.
,
Wallenius
,
T.
,
Nicklasson
,
P. J.
, and
Sundsbø
,
P. A.
,
2010
, “
Effect of Atmospheric Temperature and Droplet Size Variation on Ice Accretion of Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
724
729
.10.1016/j.jweia.2010.06.007
20.
Homola
,
M. C.
,
Nicklasson
,
P. J.
, and
Sundsbø
,
P. A.
,
2006
, “
Ice Sensors for Wind Turbines
,”
Cold Reg. Sci. Technol.
,
46
(
2
), pp.
125
131
.10.1016/j.coldregions.2006.06.005
21.
Parent
,
O.
, and
Ilinca
,
A.
,
2011
, “
Anti-Icing and De-Icing Techniques for Wind Turbines: Critical Review
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
88
96
.10.1016/j.coldregions.2010.01.005
22.
Seifert
,
H.
,
2003
, “
Technical Requirements for Rotor Blades Operating in Cold Climate
,”
VI BOREAS Conference
, Pyhatunturi, Finland.
23.
Carlsson
,
V.
,
2011
, “
Measuring Routines of Ice Accretion for Wind Turbine Applications: The Correlation Between Production Losses and Detection of Ice
,” M.S. thesis, Skelleftea Kraft AB, Sweden.
24.
Fikke
,
M. S.
,
2009
, “
COST Action 727 WG2—Review of Results
,” IWAIS XIII, Andermatt.
25.
Dahlberg
,
M.
,
2010
, “
Development of a System for Ice Detection by Using Commercial Heated Cup Anemometers
,” M.S. thesis, KTH, Stockholm.
26.
Owusu
,
K. P.
,
Kuhn
,
D.
, and
Bibeau
,
E. L.
,
2013
, “
Capacitive Probe for Ice Detection and Accretion Rate Measurement: Proof of Concept
,”
Renewable Energy
,
50
, pp.
196
205
.10.1016/j.renene.2012.06.003
27.
Laakso
,
T.
, and
Peltola
,
E.
,
2005
, “
Review on Blade Heating Technology and Future Prospects
,” BOREAS VII, Saariselka, Finland.
28.
Pallarol
,
J. G.
,
Sunden
,
B.
, and
Wu
,
Z.
,
2014
, “
On Ice Accretion for Wind Turbines and Influence of Some Parameters
,”
Aerodynamics of Wind Turbines: Emerging Topics
,
R. S.
Amano
, and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
.10.2495/978-1-78466-004-8/006
29.
Walsh
,
M.
,
2010
, “
Accretion and Removal of Wind Turbine Icing in Polar Conditions
,” M.S. thesis, Aalto University, Helsinki, Finland.
30.
Wallenius
,
T.
,
Antikainen
,
P.
,
Peltola
,
E.
, and
Dilingh
,
J.
,
2012
,
Design Principles of VTT Ice Prevention System
,
VTT Technical Research Centre
,
Finland
.
31.
Petrenko
,
V. F.
,
Sullivan
,
C. R.
,
Kozlyuk
,
V.
,
Petrenko
,
F. V.
, and
Veerasamy
,
V.
,
2011
, “
Pulse Electro-Thermal De-Icer (PETD)
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
70
78
.10.1016/j.coldregions.2010.06.002
32.
Albers
,
A.
,
2011
, “
Summary of a Technical Validation of Enercon's Rotor Blade De-Icing System
,” Deutsche WindGuard Consulting GmbH, Varel, Germany, Report No. PP11035.
33.
Battisti
,
L.
,
Baggio
,
P.
, and
Fedrizzi
,
R.
,
2006
, “
Warm-Air Intermittent De-Icing System for Wind Turbines
,”
Wind Eng.
,
30
(
5
), pp.
361
374
.10.1260/030952406779502713
34.
Mayer
,
C.
,
Ilinca
,
A.
,
Fortin
,
G.
, and
Perron
,
J.
,
2007
, “
Wind Tunnel Study of Electro-Thermal De-Icing of Wind Turbine Blades
,”
Int. J. Offshore Polar Eng.
,
17
(
3
), pp.
182
–188.
35.
Mohseni
,
M.
, and
Amirfazli
,
A.
,
2013
, “
A Novel Electro-Thermal Anti-Icing System for Fiber-Reinforced Polymer Composite Airfoils
,”
Cold Reg. Sci. Technol.
,
87
, pp.
47
58
.10.1016/j.coldregions.2012.12.003
36.
Suke
,
P.
,
2014
, “
Analysis of Heating Systems to Mitigate Ice Accretion on Wind Turbine Blades
,” M.S. thesis, McMaster University, Hamilton, ON, Canada.
37.
Makkonen
,
L.
,
2012
, “
Ice Adhesion—Theory, Measurements, and Countermeasures
,”
J. Adhes. Sci. Technol.
,
26
(
4–5
), pp.
413
445
.10.1163/016942411X574583
38.
Meuler
,
A. J.
,
Smith
,
J. D.
,
Varanasi
,
K. K.
,
Mabry
,
J. M.
,
McKinley
,
G. H.
, and
Cohen
,
R. E.
,
2010
, “
Relationships Between Water Wettability and Ice Adhesion
,”
ACS Appl. Mater. Interfaces
,
2
(
11
), pp.
3100
3110
.10.1021/am1006035
39.
Chen
,
J.
,
Liu
,
J.
,
He
,
M.
,
Li
,
K.
,
Cui
,
D.
,
Zhang
,
Q.
,
Zeng
,
X.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Song
,
Y.
,
2012
, “
Superhydrophobic Surfaces Cannot Reduce Ice Adhesion
,”
Appl. Phys. Lett.
,
101
(
11
), p.
111603
.10.1063/1.4752436
40.
Susoff
,
M.
,
Siegmann
,
K.
,
Pfaffenroth
,
C.
, and
Hirayama
,
M.
,
2013
, “
Evaluation of Icephobic Coatings—Screening of Different Coatings and Influence of Roughness
,”
Appl. Surf. Sci.
,
282
, pp.
870
879
.10.1016/j.apsusc.2013.06.073
41.
Beisswenger
,
A.
,
Fortin
,
G.
, and
Laforte
,
C.
,
2010
,
Advances in Ice Adherence and Accumulation Reduction Testing at the Anti-Icing Materials International Laboratory (AMIL)
,
Future De-Icing Technologies
,
Berlin
.
42.
International Energy Agency
,
2013
,
Technology Roadmap Wind Energy
,
2013 ed.
,
International Energy Agency
,
Paris
.
43.
Chowdhury
,
S.
,
Zhang
,
J.
,
Tong
,
W.
, and
Messac
,
A.
,
2014
, “
Modeling the Influence of Land-Shape on the Energy Production Potential of a Wind Farm Site
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011203
.10.1115/1.4026201
44.
Pryor
,
S. C.
, and
Barthelmie
,
R. J.
,
2010
, “
Climate Change Impacts on Wind Energy: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
430
437
.10.1016/j.rser.2009.07.028
You do not currently have access to this content.