In this paper, the problem of axial annular flow of non-Newtonian fluids is examined. By utilizing the slot analogy, a Fanning friction factor—Reynolds number relationship for a power law fluid was developed and presented. Good agreement over the entire range of flow regimes was obtained between model predictions and experimental data. The advantage of the proposed approach is that it eliminates the need to determine the dimensionless radial position of zero shear stress required to solve flow equations. Practical applications of this work include processes in the petroleum and chemical industries in which annular flow of non-Newtonian fluids is a common occurrence.

References

References
1.
Fredrickson
,
A. G.
, and
Bird
,
R. B.
,
1958
, “
Non-Newtonian Flow in Annuli
,”
Ind. Eng. Chem.
,
50
(
3
), pp.
347
352
.10.1021/ie50579a035
2.
Hanks
,
R. W.
, and
Larsen
,
K. M.
,
1979
, “
The Flow of Power-Law Non-Newtonian Fluids in Concentric Annuli
,”
Ind. Eng. Chem. Fundam.
,
18
(
1
), pp.
33
35
.10.1021/i160069a008
3.
Hanks
,
R. W.
,
1979
, “
The Axial Laminar Flow of Yield-Pseudoplastic Fluids in a Concentric Annulus
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
3
), pp.
488
493
.10.1021/i260071a024
4.
Gücüyener
,
H. I.
, and
Mehmetoglu
,
T.
,
1992
, “
Flow of Yield-Pseudo-Plastic Fluids Through a Concentric Annulus
,”
AIChE J.
,
38
(
7
), pp.
1139
1143
.10.1002/aic.690380717
5.
Nebrensky
,
J.
, and
Ulbrecht
,
J.
,
1968
, “
Non-Newtonian Flow in Annular Ducts
,”
Collect. Czech. Chem. Commun.
,
33
(2), pp.
363
375
.10.1135/cccc19680363
6.
Russell
,
C. P.
, and
Christiansen
,
E. B.
,
1974
, “
Axial, Laminar, Non-Newtonian Flow in Annuli
,”
Ind. Eng. Chem. Process Des. Dev.
,
13
(
4
), pp.
391
396
.10.1021/i260052a017
7.
Haciislamoglu
,
M.
, and
Langlinais
,
J.
,
1990
, “
Non-Newtonian Flow in Eccentric Annuli
,”
ASME J. Energy Resour. Technol.
,
112
(
3
), pp.
163
169
.10.1115/1.2905753
8.
Walton
,
I. C.
, and
Bittleston
,
S. H.
,
1991
, “
The Axial Flow of a Bingham Plastic in a Narrow Eccentric Annulus
,”
J. Fluid Mech.
,
222
, pp.
39
60
.10.1017/S002211209100099X
9.
Vaughn
,
R. D.
,
1965
, “
Axial Laminar Flow of Non-Newtonian Fluids in Narrow Eccentric Annuli
,”
Soc. Pet. Eng. J.
,
5
(4), pp.
277
280
.10.2118/1138-PA
10.
Iyoho
,
A. W.
, and
Azar
,
J. J.
,
1981
, “
An Accurate Slot-Flow Model for Non-Newtonian Fluid Flow through Eccentric Annuli
,”
Soc. Pet. Eng. J.
,
21
(
5
), pp.
565
572
.10.2118/9447-PA
11.
Mitsuishi
,
N.
, and
Aoyagi
,
Y.
,
1973
, “
Non-Newtonian Fluid Flow in an Eccentric Annulus
,”
J. Chem. Eng. Jpn.
,
6
(5), pp.
402
408
.10.1252/jcej.6.402
12.
Haciislamoglu
,
M.
, and
Cartalos
,
U.
,
1994
, “
Practical Pressure Loss Predictions in Realistic Annular Geometries
,”
Proceedings of the SPE Annual Technical Conference and Exhibition
, New Orleans, LA.
13.
Langlinais
,
J. P.
,
Bourgoyne
,
A. T.
, and
Holden
,
W. R.
,
1985
, “
Frictional Pressure Losses for Annular Flow of Drilling Mud and Mud-Gas Mixtures
,”
ASME J. Energy Resour. Technol.
,
107
(
1
), pp.
142
151
.10.1115/1.3231154
14.
Okafor
,
M. N.
, and
Evers
,
J. F.
,
1992
, “
Experimental Comparison of Rheology Models for Drilling Fluids
,”
Proceedings of the SPE Western Regional Meeting
, Bakersfield, CA.
15.
Hansen
,
S. A.
,
Rommetveit
,
R.
,
Sterri
,
N.
,
Aas
,
B.
, and
Merlo
,
A.
,
1999
, “
A New Hydraulic Model for Slim Hole Drilling Applications
,”
Proceedings of SPE/IADC Middle East Drilling Technology Conference
, Abu Dhabi, Paper No. SPE 57579.
16.
Subramanian
,
R.
,
1995
, “
A Study of Pressure Loss Correlations of Drilling Fluids in Pipes and Annuli
,” M.S., thesis, The University of Tulsa, Tulsa.
17.
Kelessidis
,
V. C.
,
Dalamarinis
,
P.
, and
Maglione
,
R.
,
2011
, “
Experimental Study and Predictions of Pressure Losses of Fluids Modeled as Herschel–Bulkley in Concentric and Eccentric Annuli in Laminar, Transitional, and Turbulent Flows
,”
J. Pet. Sci. Eng.
,
77
(3–4), pp.
305
312
.10.1016/j.petrol.2011.04.004
18.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
, pp.
617
641
.10.1017/S0022112093001922
19.
Nouri
,
J. M.
, and
Whitelaw
,
J. H.
,
1997
, “
Flow of Newtonian and Non-Newtonian Fluids in an Eccentric Annulus With Rotation of the Inner Cylinder
,”
Int. J. Heat Fluid Flow
,
18
(
2
), pp.
236
246
.10.1016/S0142-727X(96)00086-0
20.
Escudier
,
M. P.
,
Oliveira
,
P. J.
, and
Pinho
,
F. T.
,
2002
, “
Fully Developed Laminar Flow of Purely Viscous Non-Newtonian Liquids Through Annuli, Including the Effects of Eccentricity and Inner-Cylinder Rotation
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
52
73
.10.1016/S0142-727X(01)00135-7
21.
Wei
,
X.
,
Miska
,
S. Z.
,
Takach
,
N. E.
,
Bern
,
P.
, and
Kenny
,
P.
,
1998
, “
The Effect of Drillpipe Rotation on Annular Frictional Pressure Loss
,”
ASME J. Energy Resour. Technol.
,
120
(
1
), pp.
61
66
.10.1115/1.2795011
22.
Erge
,
O.
,
Ozbayoglu
,
M. E.
,
Miska
,
S. Z.
,
Mengjiao
,
Y.
,
Takach
,
N. E.
,
Saasen
,
A.
, and
May
,
R.
,
2014
, “
Effect of Drillstring Deflection and Rotary Speed on Annular Frictional Pressure Losses
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042909
.10.1115/1.4027565
23.
Saasen
,
A.
,
2014
, “
Annular Frictional Pressure Losses During Drilling—Predicting the Effect of Drillstring Rotation
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
034501
.10.1115/1.4026205
24.
Mishra
,
P.
, and
Mishra
,
I.
,
1976
, “
Flow Behavior of Power Law Fluids in an Annulus
,”
AIChE J.
,
22
(
3
), pp.
617
619
.10.1002/aic.690220336
25.
David
,
J.
, and
Filip
,
P.
,
1995
, “
Relationship of Annular and Parallel-Plate Poiseuille Flows for Power-Law Fluids
,”
Polym. Plast. Technol. Eng.
,
34
(
6
), pp.
947
960
.10.1080/03602559508012186
26.
Dodge
,
D. W.
, and
Metzner
,
A. B.
,
1959
, “
Turbulent Flow of Non-Newtonian Systems
,”
AIChE J.
,
5
(
2
), pp.
189
204
.10.1002/aic.690050214
27.
Langlinais
,
J. P.
,
Bourgoyne
,
A. T.
, and
Holden
,
W. R.
,
1983
, “
Frictional Pressure Losses for the Flow of Drilling Mud and Mud/Gas Mixtures
,”
Proceedings of SPE Annual Technical Conference and Exhibition
, San Francisco, CA.
28.
Ahmed
,
R.
,
2005
, “
Experimental Study and Modeling of Yield Power-Law Fluid Flow in Pipes and Annuli
,” Report for The University of Tulsa, Drilling Research Projects (TUDRP), Tulsa, OK.
29.
Pilehvari
,
A.
, and
Serth
,
R.
,
2009
, “
Generalized Hydraulic Calculation Method for Axial Flow of Non-Newtonian Fluids in Eccentric Annuli
,”
SPE Drill. Completion
,
24
(
4
), pp.
553
563
.10.2118/111514-PA
You do not currently have access to this content.