A novel combustion technology which combines colorless distributed combustion (CDC) and oxygen enriched combustion (OEC) air is examined to achieve optimum benefits of both technologies and to foster novel technologies for cleaner environment. The influence of oxygen enriched air–methane flames under nonpremixed and premixed fuel-lean combustion conditions is examined with focus on emission of NO and CO, combustor exit temperature (Texit), and distribution of reaction zone in the combustor using OH* chemiluminescence intensity distribution. A cylindrical combustor was used at combustion intensity of 36 MW/m3·atm and heat load of 6.25 kW. Results are also reported with normal air (21% oxygen). Oxygen enrichment provided stable combustion operation at lower equivalence ratios than normal air and also reduced CO emission. Increase in oxygen concentration from 21% to 25% or 30% increased the NO and decreased CO emissions at all the equivalence ratios examined. Using 30% O2 enriched air in premixed case showed NO emissions of 11.4 ppm and 4.6 ppm at equivalence ratios of 0.5 and 0.4, respectively. Oxygen enrichment also reduced CO emission to 38 ppm at equivalence ratio of 0.5. Operating the combustor with normal air at these equivalence ratios resulted in unstable combustion. OH* chemiluminescence revealed increased intensity with the reaction zone to shift upstream at increased oxygen concentration. The exhaust temperature of the combustor increased with oxygen enrichment leading to lower CO concentration and increased combustion efficiency. The oxidizer injected at higher velocities moved the reaction zone to upstream location with simultaneous reduction of both NO and CO, specifically under nonpremixed combustion.

References

1.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
Taylor & Francis
,
New York
.
2.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2003
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton, FL
.
3.
Gupta
,
A. K.
,
2004
, “
Thermal Characteristics of Gaseous Fuel Flames Using High Temperature Air
,”
ASME J Eng. Gas Turbines Power
,
126
(
9
), pp.
9
19
.10.1115/1.1610009
4.
Baukal
,
C. E.
,
1998
,
Oxygen-Enhanced Combustion
,
CRC Press
,
New York
.
5.
Sánchez
,
M.
,
Cadavid
,
F.
, and
Amell
,
A.
,
2013
, “
Experimental Evaluation of a 20 kW Oxygen Enhanced Self-Regenerative Burner Operated in Flameless Combustion Mode
,”
Appl. Energy
,
111
, pp.
240
246
.10.1016/j.apenergy.2013.05.009
6.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
Appl. Energy
,
87
(
5
), pp.
1631
1640
.10.1016/j.apenergy.2009.09.032
7.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
1
), pp.
29
40
.10.1016/j.apenergy.2010.04.030
8.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2011
, “
Swirling Distributed Combustion for Clean Energy Conversion in Gas Turbine Applications
,”
Appl. Energy
,
88
(
11
), pp.
3685
3693
.10.1016/j.apenergy.2011.03.048
9.
Archer
,
S.
, and
Gupta
,
A. K.
,
2004
, “
Effect of Swirl on Flow Dynamics in Unconfined and Confined Gaseous Fuel Flames
,”
AIAA
Paper No. 2004-0813.10.2514/6.2004-813
10.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
ABACUS Press
,
Tunbridge Wells, UK
.
11.
Wu
,
K.-K.
,
Chang
,
Y.-C.
,
Chen
,
C.-H.
, and
Chen
,
Y.-D.
,
2010
, “
High-Efficiency Combustion of Natural Gas With 21–30% Oxygen-Enriched Air
,”
Fuel
,
89
(
9
), pp.
2455
2462
.10.1016/j.fuel.2010.02.002
12.
Nimmo
,
W.
,
Daood
,
S. S.
, and
Gibbs
,
B. M.
,
2010
, “
The Effect of O2 Enrichment on NOx Formation in Biomass Co-Fired Pulverised Coal Combustion
,”
Fuel
,
89
(
10
), pp.
2945
2952
.10.1016/j.fuel.2009.12.004
13.
Nazim
,
M.
,
Toufik
,
B.
,
Christian
,
C.
,
Stephani
,
D.
,
Laure
,
P.
,
Brahim
,
S.
, and
Iskender
,
G.
,
2014
, “
Combustion Characteristics of Methane–Oxygen Enhanced Air Turbulent Non-Premixed Swirling Flames
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
53
60
.10.1016/j.expthermflusci.2013.11.019
14.
Shen
,
Q.
,
Miyata
,
Y.
,
Morita
,
S.
,
Baba
,
Y.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2013
, “
Visualization of Two Dimensional Excitation Temperatures in CH4/N2/Ar Plasmas for Preparation of Carbonaceous Materials
,”
J. Energy Resources Tech
,
135
(3), pp.
034
501
.
15.
Szego
,
G. G.
,
Dally
,
B. B.
, and
Nathan
,
G. J.
,
2009
, “
Operational Characteristics of a Parallel Jet MILD Combustion Burner System
,”
Combust. Flame
,
156
(
2
), pp.
429
438
.10.1016/j.combustflame.2008.08.009
16.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
, 2nd ed.,
McGraw-Hill
,
New York
.
17.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
(
1
), pp.
21
32
.10.1017/S0022112061000834
18.
Han
,
D.
, and
Mungal
,
M. G.
,
2001
, “
Direct Measurement of Entrainment in Reacting/Nonreacting Turbulent Jets
,”
Combust. Flame
,
124
(
3
), pp.
370
386
.10.1016/S0010-2180(00)00211-X
You do not currently have access to this content.