The allocation of feedwater heating in regenerative heaters is one of the important points related to the thermo-economy analysis of thermal power plants. Optimizing the allocation of feedwater heating can obtain obvious economic benefits without additional equipment investment or material consumption. Based on a modified particle swarm optimization (PSO), this paper proposes a numerical model for feedwater heating allocation problem in selecting the optimum feedwater heating allocation of large capacity steam turbine unit. A real case of a 600 MW steam turbine unit shows that the optimized results are significantly better than the original design value. The proposed method is convenient for analyzing and solving the problem of optimum feedwater heating allocation, and the results presented in this work should have important implications in the design and tapping energy-saving potential of large capacity steam turbine unit.

References

References
1.
Wang
,
L.
,
Yang
,
Y.
,
Dong
,
C.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2014
, “
Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031601
.10.1115/1.4026268
2.
Qi
,
L.
,
Huang
,
S.
,
Zhang
,
Y.
,
Xu
,
X.
,
Li
,
Y.
, and
Wang
,
Y.
,
2014
, “
A Compartmental Model for Supercritical Coal-Fired Boiler Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021602
.10.1115/1.4025959
3.
Black & Veatch
,
2003
,
Power Plant Engineering
,
Springer
,
New York
, Chap. 3.
4.
Li
,
Y.
, and
Wang
,
C.
,
2012
, “
Study on the Effect of Regenerative System on Power Type Relative Internal Efficiency of Nuclear Steam Turbine
,”
Energy Procedia
,
17
, pp.
906
912
.10.1016/j.egypro.2012.02.186
5.
Aljundi
,
I. H.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Jordan
,”
Appl. Therm. Eng.
,
29
(
2
), pp.
324
328
.10.1016/j.applthermaleng.2008.02.029
6.
Yang
,
Y.
,
Wang
,
L.
,
Dong
,
C.
,
Xu
,
G.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2013
, “
Comprehensive Exergy-Based Evaluation and Parametric Study of a Coal-Fired Ultra-Supercritical Power Plant
,”
Appl. Energy
,
112
, pp.
1087
1099
.10.1016/j.apenergy.2012.12.063
7.
Tuo
,
H.
,
2013
, “
Energy and Exergy-Based Working Fluid Selection for Organic Rankine Cycle Recovering Waste Heat From High Temperature Solid Oxide Fuel Cell and Gas Turbine Hybrid Systems
,”
Int. J. Energy Res.
,
37
(
14
), pp.
1831
1841
.10.1002/er.3001
8.
Tuo
,
H.
,
2011
, “
Thermal-Economic Analysis of a Transcritical Rankine Power Cycle With Reheat Enhancement for a Low-Grade Heat Source
,”
Int. J. Energy Res.
,
37
(
8
), pp.
857
867
.10.1002/er.2886
9.
Roy
,
J. P.
,
Mishra
,
M. K.
, and
Misra
,
A.
,
2011
, “
Parametric Optimization and Performance Analysis of a Regenerative Organic Rankine Cycle Using Low-Grade Waste Heat for Power Generation
,”
Int. J. Green Energy
,
8
(
2
), pp.
173
196
.10.1080/15435075.2010.550017
10.
Pei
,
G.
,
Li
,
J.
, and
Ji
,
J.
,
2010
, “
Analysis of Low Temperature Solar Thermal Electric Generation Using Regenerative Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
30
(
8
), pp.
998
1004
.10.1016/j.applthermaleng.2010.01.011
11.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
.10.1115/1.4023513
12.
Wang
,
M.
,
Wang
,
J.
,
Zhao
,
Y.
,
Zhao
,
P.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of a Solar-Driven Regenerative Organic Rankine Cycle (ORC) Based on Flat-Plate Solar Collectors
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
816
825
.10.1016/j.applthermaleng.2012.08.013
13.
Zhang
,
J. L.
, and
Ge
,
B.
,
2005
, “
Application of Genetic Algorithm in Feed Heating's Distribution of PWR Nuclear Power Unit
,”
Proc. CSEE
,
25
(
6
), pp.
152
156
.10.3321/j.issn:0258-8013.2005.06.028
14.
Deng
,
S. M.
,
Chi
,
Q. H.
, and
Jin
,
H. G.
,
2004
, “
Optimization of the Heat Regenerative System After the Modification of the Flow Path of the Steam Turbine
,”
J. Power Eng.
,
24
(
2
), pp.
195
198
.10.3321/j.issn:1000-6761.2004.02.010
15.
Ilamathi
,
P.
,
Selladurai
,
V.
, and
Balamurugan
,
K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032201
.10.1115/1.4023328
16.
Liu
,
L.
, and
Liu
,
C.
,
2013
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.10.1115/1.4007940
17.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
IEEE
World Congress on Computational Intelligence
,
Anchorage, AK
, pp.
69
73
.10.1109/ICEC.1998.699146
18.
Norouzzadeh
,
M. S.
,
Ahmadzadeh
,
M. R.
, and
Palhang
,
M.
,
2012
, “
LADPSO: Using Fuzzy Logic to Conduct PSO Algorithm
,”
Appl. Intell.
,
37
(
2
), pp.
290
304
.10.1007/s10489-011-0328-6
19.
Chatterjee
,
A.
, and
Siarry
,
P.
,
2006
, “
Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization
,”
Comput. Oper. Res.
,
33
(
3
), pp.
859
871
.10.1016/j.cor.2004.08.012
20.
Hu
,
J. X.
, and
Zeng
,
J. C.
,
2006
, “
A Particle Swarm Optimization Model With Stochastic Inertia Weight
,”
Comput. Simul.
,
23
(
8
), pp.
164
167
.10.3969/j.issn.1006-9348.2006.08.045
21.
Nickabadi
,
A.
,
Ebadzadeh
,
M. M.
, and
Safabakhsh
,
R.
,
2011
, “
A Novel Particle Swarm Optimization Algorithm With Adaptive Inertia Weight
,”
Appl. Soft Comput.
,
11
(
4
), pp.
3658
3670
.10.1016/j.asoc.2011.01.037
22.
Yang
,
X.
,
Yuan
,
J.
,
Yuan
,
J.
, and
Mao
,
H.
,
2007
, “
A Modified Particle Swarm Optimizer With Dynamic Adaptation
,”
Appl. Math. Comput.
,
189
(
2
), pp.
1205
1213
.10.1016/j.amc.2006.12.045
23.
Kennedy
,
J.
, and
Mendes
,
R.
,
2002
, “
Population Structure and Particle Swarm Performance
,”
Evolutionary Computation
,
Honolulu, HI
, pp.
1671
1676
.10.1109/CEC.2002.1004493
24.
Peram
,
T.
,
Veeramachaneni
,
K.
, and
Mohan
,
C. K.
,
2003
, “
Fitness-Distance-Ratio Based Particle Swarm Optimization
,”
IEEE
SIS'03,
Indianapolis, IN
, pp.
174
181
.10.1109/SIS.2003.1202264
25.
Mendes
,
R.
,
Kennedy
,
J.
, and
Neves
,
J.
,
2004
, “
The Fully Informed Particle Swarm: Simpler, Maybe Better
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
204
210
.10.1109/TEVC.2004.826074
26.
Liang
,
J. J.
,
Qin
,
A. K.
,
Suganthan
,
P. N.
, and
Baskar
,
S.
,
2006
, “
Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions
,”
IEEE Trans. Evol. Comput.
,
10
(
3
), pp.
281
295
.10.1109/TEVC.2005.857610
27.
Lo
,
Y. P.
,
Li
,
S. Z.
,
Chen
,
S. L.
,
Guo
,
W. Z.
, and
Zhou
,
C. L.
,
2007
, “
Particle Swarm Optimization Based on Adaptive Diffusion and Hybrid Mutation
,”
J. Software
,
18
(
11
), pp.
2740
2751
.10.1360/jos182740
You do not currently have access to this content.