An air separation unit (ASU) represents the largest overall energy consumption (about 15–20%) in a steel production facility. Therefore, improving the operating efficiency of an ASU is an effective way to achieve energy savings and emission reductions. The exergy calculation program for an air separation process is developed, and the detailed exergy calculations and analysis for an actual ASU with capacity of 40,000 Nm3/h in service at Tangshan Tangsteel Gas Co. Ltd. are performed. The results show that the molar exergy contained in oxygen is the largest among all gaseous products, liquid argon contains the largest molar exergy among all liquid products, and liquid products of the same type have larger exergy values than their gaseous equivalents. In a same condition scenario (same environmental condition, same air feed mass flow at rated load operation of the expander), increasing liquids production is an effective way to enhance the process efficiency, especially by increasing liquid argon production at the rated load operation of the expander. The object efficiency of the process from the cleaning unit to production in an actual 40,000 m3/h ASU is 46.84%, while the simple efficiency of the cold box of the ASU is 64.31%. The largest amount of exergy loss is caused by the air compressor (AC), the packed-type air cooling tower (PACT), and the molecular sieve (MS) purifier. The cryogenic ASU itself is well operated from an exergetic viewpoint. On the basis of exergy analysis conducted, this study provides a reference for the improvement of the ASU analyzed and provides a reference for ASUs in general.

References

References
1.
Du
,
T.
,
Shi
,
T.
,
Liu
,
Y.
, and
Ye
,
J. B.
,
2013
, “
Energy Consumption, Its Influencing Factors of Iron and Steel Enterprise
,”
J. Iron Steel Res. Int.
,
20
(
8
), pp.
8
13
.10.1016/S1006-706X(13)60134-X
2.
Zhang
,
P. K.
, and
Wang
,
L.
,
2012
, “
Numerical Analysis on the Performance of the Three-Bed Temperature Swing Adsorption Process for Air Prepurification
,”
Ind. Eng. Chem. Res.
,
52
(
2
), pp.
885
898
10.1021/ie302166z.
3.
Guo
,
Z. C.
, and
Fu
,
Z. X.
,
2010
, “
Current Situation of Energy Consumption, Measures Taken for Energy Saving in the Iron, Steel Industry in China
,”
Energy
,
35
(
11
), pp.
4356
4360
.10.1016/j.energy.2009.04.008
4.
Saidur
,
R.
,
Islam
,
M. R.
,
Rahim
,
N. A.
, and
Solangi
,
K. H.
,
2010
, “
A Review on Global Wind Energy Policy
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1744
1762
.10.1016/j.rser.2010.03.007
5.
U.S. DOE/EIA,
2006
, Manufacturing Energy Consumption Survey (MECS)-2006 Data, EIA, Washington, DC.
6.
Ansari
,
N.
, and
Seifi
,
A.
,
2012
, “
A System Dynamics Analysis of Energy Consumption, Corrective Policies in Iranian Iron, Steel Industry
,”
Energy
,
43
(
1
), pp.
334
343
.10.1016/j.energy.2012.04.020
7.
Chen
,
G. L.
,
2005
, “
Configuration of Air Separation Unit for Steelworks
,”
Gas Sep.
, pp.
9
16
(in Chinese).
8.
Xu
,
Z. H.
,
Zhao
,
J.
,
Chen
,
X.
,
Shao
,
Z. J.
,
Qian
,
J. X.
,
Zhu
,
L. Y.
,
Zhou
,
Z. Y.
, and
Qin
,
H. Z.
,
2011
, “
Automatic Load Change System of Cryogenic Air Separation Process
,”
Sep. Purif. Technol.
,
81
(
3
), pp.
451
465
.10.1016/j.seppur.2011.08.024
9.
Franco
,
A.
, and
Vazquez
,
A. R.
,
1993
, “
A Thermodynamic Based Approach for the Multicriteria Assessment of Energy Conversion Systems
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
346
351
10.1115/1.2358149.
10.
Yasuki
,
K.
,
Akira
,
K.
,
Tsuguhiko
,
N.
, and
Atsushi
,
T.
,
2011
, “
A Novel Cryogenic Air Separation Process Based on Self-Heat Recuperation
,”
Sep. Purif. Technol.
,
77
(
3
), pp.
389
396
10.1016/j.seppur.2011.01.012.
11.
Egoshi
,
N.
,
Kawakami
,
H.
, and
Asano
,
K.
,
2002
, “
Heat, Mass Transfer Model Approach to Optimum Design of Cryogenic Air Separation Plant by Packed Columns With Structured Packing
,”
Sep. Purif. Technol.
,
29
(
2
), pp.
141
151
.10.1016/S1383-5866(02)00070-9
12.
Yan
,
W. P.
,
Zhao
,
W. J.
, and
Lu
,
X. Y.
,
2011
, “
Energy Consumption Analysis of Air Separation Units for Oxygen-Enriched Combustion Power Generation System
,”
Cryogenics
, pp.
19
24
(in Chinese)10.3969/j.issn.1000-6516.2011.02.004.
13.
Zhu
,
Y.
,
Somasundaram
,
S.
, and
Kemp
,
J. W.
,
2010
, “
Energy and Exergy Analysis of Gasifier-Based Coal-To-Fuel Systems
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), pp.
1
8
10.1115/1.4001572.
14.
Sodeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031201
.10.1115/1.4026313
15.
Fu
,
H. L.
,
Shao
,
X. Z.
,
Cai
,
S. M.
, and
Ning
,
J. M.
,
2012
, “
Configuration, Summarization of Operation of Two Sets of 40,000 m3/h Air Separation Plant of Bayi Iron & Steel
,”
Cryog. Technol.
, pp.
17
20
(in Chinese).
16.
Halder
,
G.
,
2009
,
Introduction to Chemical Engineering Thermodynamics
,
PHI Learning Pvt Ltd
,
Delhi, India
.
17.
Poling
,
B. E.
,
Prausnitz
,
J. M.
,
John Paul
,
O. C.
, and
Reid
,
R. C.
,
2011
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
18.
Zhang
,
Z. Z.
,
Fu
,
J. F.
, and
Xu
,
W. H.
,
1983
, “
The Computer Program Design of Distillation System of ASU
,”
Cryog. Technol.
, pp.
1
18
(in Chinese).
19.
Anonymous
,
2005
, Technical Guides for Exergy Analysis in Energy System, China National Standard, Report No. GB/T 14909-2005 (in Chinese).
20.
van ser Ham
,
L. V.
, and
Kjelstrup
,
S.
, “
Exergy Analysis of Two Cryogenic Air Separation Processes
,”
Energy
,
35
(
12
), pp.
4731
4739
10.1016/j.energy.2010.09.019.
21.
Ferreira
,
S. B.
, and
Pilidis
,
P.
,
2011
, “
Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
291
296
10.1115/1.1413468.
22.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
.10.1115/1.3120381
23.
Cornelissen
,
R. L.
, and
Hirs
,
G. G.
,
1998
, “
Exergy Analysis of Cryogenic Air Separation
,”
Energy Convers. Manage.
,
39
(
16
), pp.
1821
1826
.10.1016/S0196-8904(98)00062-4
You do not currently have access to this content.