CO2 capture (CC) using hot K2CO3 solvent in integrated gasification combined cycle (IGCC) plant is a promising technology for CO2 emission reduction. Based on pilot scale trials, an innovative IGCC system with CC using hot K2CO3 solvent is proposed, in which the intercooling heat between CO2 compressors is recovered for CO2 regeneration (IGCC + CC + HR). Thermodynamic performance and exergy and energy utilization diagram (EUD) analysis are presented. Results show that recovery of the intercooling heat between CO2 compressors reduces the steam extraction requirement from turbines for CO2 regeneration by around 18% and enhances the efficiency of IGCC with CO2 capture (IGCC + CC) plant by 0.3–0.7 percentage points. With 90% CC, the efficiency of the IGCC + CC + HR plant is around 35.4% which is higher than IGCC + CC plant using Selexol technology. Compared to IGCC, the energy penalty for CC in IGCC + CC + HR plant is mainly caused by the exergy losses in CO2 separation (45.2%), water gas shift (WGS) (28.5%), combined cycle (20.7%) and CO2 compression units (5.6%). EUD analysis shows that the IGCC + CC + HR plant realizes good match of the energy levels between the intercooling heat and the recovered steam for CO2 regeneration, thereby obviously reducing the exergy losses in CO2 compression and separation units and improving the plant efficiency. The results presented in this paper confirm the sources causing the energy penalty for CC in IGCC power plant and the new IGCC + CC + HR system helps to reduce the energy penalty for CC in IGCC power plant based on solvent technologies.

References

References
1.
IPCC
,
2005
, “
IPCC Special Report on Carbon Dioxide Capture and Storage
,”
Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
Geneva, Switzerland
.
2.
IEA
,
2011
,
Cost and Performance of Carbon Dioxide Capture From Power Generation
,
2011 ed.
, IEA ETSAP (Energy Technology Systems Analysis Programme), Paris.
3.
Smith
,
K. H.
,
Anderson
,
C. J.
,
Tao
,
W.
,
Endo
,
K.
,
Mumford
,
K. A.
,
Kentish
,
S. E.
,
Qader
,
A.
,
Hooper
,
B.
, and
Stevens
,
G. W.
,
2012
, “
Pre-Combustion Capture of CO2—Results From Solvent Absorption Pilot Plant Trials Using 30 wt% Potassium Carbonate and Boric Acid Promoted Potassium Carbonate Solvent
,”
Int. J. Greenhouse Gas Control
,
10
, pp.
64
73
.10.1016/j.ijggc.2012.05.018
4.
Benson
,
H. E.
,
Field
,
J. H.
, and
Haynes
,
W. P.
,
1956
, “
Improved Process for Carbon Dioxide Absorption Uses Hot Carbonate Solutions
,”
Chem. Eng. Prog.
,
52
, pp.
433
438
.
5.
Savage
,
D. W.
,
Astarita
,
G.
, and
Joshi
,
S.
,
1980
, “
Chemical Absorption and Desorption of Carbon Dioxide From Hot Carbonate Solutions
,”
Chem. Eng. Sci.
,
35
(
7
), pp.
1513
1522
.10.1016/0009-2509(80)80045-5
6.
Benson
,
H. E.
,
Field
,
J. H.
, and
Jimeson
,
R. M.
,
1954
, “
Carbon Dioxide Absorption Employing Hot Potassium Carbonate Solutions
,”
Chem. Eng. Prog.
,
50
, pp.
356
364
.
7.
Buck
,
B. O.
, and
Leitch
,
A. R. S.
,
1958
, “
Try Gas Treating With Hot Carbonate
,”
Pet. Refin.
,
37
, pp.
241
246
.
8.
Astarita
,
G.
,
Savage
,
D. W.
, and
Longo
,
J. M.
,
1981
, “
Promotion of CO2 Mass Transfer in Carbonate Solutions
,”
Chem. Eng. Sci.
,
36
(
3
), pp.
581
588
.10.1016/0009-2509(81)80146-7
9.
Tosh
,
J. S.
,
Field
,
J. H.
,
Benson
,
H. E.
, and
Haynes
,
W. P.
,
1959
, “
Equilibrium Study of the System Potassium Carbonate, Potassium Bicarbonate, Carbon Dioxide, and Water
,” Bureau of Mines Report of Investigations, Report No. 5484, p.
23
.
10.
Behr
,
P.
,
Maun
,
A.
,
Deutgen
,
K.
,
Tunnat
,
A.
,
Oeljeklaus
,
G.
, and
Görner
,
K.
,
2011
, “
Kinetic Study on Promoted Potassium Carbonate Solutions for CO2 Capture From Flue Gas
,”
Energy Procedia
,
4
, pp.
85
92
.10.1016/j.egypro.2011.01.027
11.
Rahimpour
,
M. R.
, and
Kashkooli
,
A. Z.
,
2004
, “
Enhanced Carbon Dioxide Removal by Promoted Hot Potassium Carbonate in a Split-Flow Absorber
,”
Chem. Eng. Process.
,
43
(
7
), pp.
857
865
.10.1016/S0255-2701(03)00106-5
12.
Todinca
,
T.
,
Tanasie
,
C.
,
Proll
,
T.
, and
Cata
,
A.
,
2007
, “
Absorption With Chemical Reaction: Evaluation of Rate Promoters Effect on CO2 Absorption in Hot Potassium Carbonate Solutions
,”
Comput. Aided Chem. Eng.
,
24
, pp.
1065
1070
.10.1016/S1570-7946(07)80202-1
13.
Kim
,
Y. E.
,
Choi
,
J. H.
,
Nam
,
S. C.
, and
Yoon
,
Y.
,
2011
, “
CO2 Absorption Characteristics in Aqueous K2CO3/Piperazine Solution by NMR Spectroscopy
,”
Ind. Eng. Chem. Res.
,
50
(
15
), pp.
9306
9313
.10.1021/ie102489r
14.
Oyenekan
,
B. A.
, and
Rochelle
,
G. T.
,
2009
, “
Rate Modeling of CO2 Stripping From Potassium Carbonate Promoted by Piperazine
,”
Int. J. Greenhouse Gas Control
,
3
(2), pp.
121
132
.10.1016/j.ijggc.2008.06.010
15.
Chen
,
E.
,
Rochelle
,
G. T.
, and
Seibert
,
F.
,
2006
, “
Pilot Plant for CO2 Capture With Aqueous Piperazine/Potassium Carbonate
,”
8th International Conference on Greenhouse Gas Control Technologies
, Trondheim, Norway.
16.
Ghosh
,
U. K.
,
Kentish
,
S. E.
, and
Stevens
,
G. W.
,
2009
, “
Absorption of Carbon Dioxide Into Aqueous Potassium Carbonate Promoted by Boric Acid
,”
Energy Procedia
,
1
(1), pp.
1075
1081
.10.1016/j.egypro.2009.01.142
17.
Guo
,
D.
,
Thee
,
H.
,
da Silva
,
G.
,
Chen
,
J.
,
Fei
,
W.
,
Kentish
,
S.
, and
Stevens
,
G. W.
,
2011
, “
Borate-Catalyzed Carbon Dioxide Hydration Via the Carbonic Anhydrase Mechanism
,”
Environ. Sci. Technol.
,
45
(11), pp.
4802
4807
.10.1021/es200590m
18.
Thee
,
H.
,
Smith
,
K. H.
,
da Silva
,
G.
,
Kentish
,
S. E.
, and
Stevens
,
G. W.
,
2015
, “
Carbonic Anhydrase Promoted Absorption of CO2 Into Potassium Carbonate Solutions
,”
Greenhouse Gas Sci. Technol.
,
5
(
1
), pp.
108
114
10.1002/ghg.1455.
19.
Thee
,
H.
,
Nicholas
,
N. J.
,
Smith
,
K. H.
,
da Silva
,
G.
,
Kentish
,
S. E.
, and
Stevens
,
G. W.
,
2014
, “
A Kinetic Study of CO2 Capture With Potassium Carbonate Solutions Promoted With Various Amino Acids: Glycine, Sarcosine and Proline
,”
Int. J. Greenhouse Gas Control
,
20
, pp.
212
222
.10.1016/j.ijggc.2013.10.027
20.
Park
,
S.
,
Song
,
H.
,
Lee
,
M.
, and
Park
,
J.
,
2014
, “
Screening Test for Aqueous Solvents Used in CO2 Capture: K2CO3 Used With Twelve Different Rate Promoters
,”
Korean J. Chem. Eng.
,
31
(
1
), pp.
125
131
.10.1007/s11814-013-0200-y
21.
Shen
,
S.
,
Feng
,
X.
,
Zhao
,
R.
,
Ghosh
,
U. K.
, and
Chen
,
A.
,
2013
, “
Kinetic Study of Carbon Dioxide Absorption With Aqueous Potassium Carbonate Promoted by Arginine
,”
Chem. Eng. J.
,
222
, pp.
478
487
.10.1016/j.cej.2013.02.093
22.
Smith
,
K.
,
Lee
,
A.
,
Mumford
,
K.
,
Li
,
S.
,
Indrawan
,
N.
,
Thanumurthy
,
N.
,
Temple
,
C.
,
Anderson
,
C.
,
Hooper
,
B.
,
Kentish
,
S.
, and
Stevens
,
G.
,
2014
, “
Pilot Plant Results for a Precipitating Potassium Carbonate Solvent Absorption Process Promoted With Glycine for Enhanced CO2 Capture
,”
Fuel Process. Technol.
(in press)10.1016/j.fuproc.2014.10.013.
23.
Urech
,
J.
,
Tock
,
L.
,
Harkin
,
T.
,
Hoadley
,
A.
, and
Maréchal
,
F.
,
2014
, “
An Assessment of Different Solvent-Based Capture Technologies Within an IGCC–CCS Power Plant
,”
Energy
,
64
(
1
), pp.
268
276
.10.1016/j.energy.2013.10.081
24.
Anderson
,
C.
,
Kathryn
,
S.
,
Qader
,
A.
,
Kohei
,
E.
,
Ghosh
,
U.
,
Tao
,
W.
,
Khan
,
A.
,
Kentish
,
S.
,
Stevens
,
G.
, and
Hooper
,
B.
,
2010
, “
Demonstrating Pre-Combustion CO2 Capture Using Solvent Technology
,” Chemeca 2010: Engineering at the Edge; Sept. 26–29, Hilton Adelaide, South Australia, pp.
181
185
.
25.
Anderson
,
C.
,
Scholes
,
C.
,
Lee
,
A.
,
Smith
,
K.
,
Kentish
,
S.
,
Stevens
,
G.
,
Webley
,
P. A.
,
Qader
,
A.
, and
Hooper
,
B.
,
2011
, “
Novel Pre-Combustion Capture Technologies in Action-Results of the CO2CRC/HRL Mulgrave Capture Project
,”
Energy Procedia
,
4
, pp.
1192
1198
.10.1016/j.egypro.2011.01.173
26.
Li
,
S.
,
Gao
,
L.
,
Jin
,
H.
,
Smith
,
K.
,
Mumford
,
K. A.
, and
Stevens
,
G.
,
2014
, “
Energy and Exergy Analyses of IGCC Power Plant With CO2 Capture Using Hot Potassium Carbonate Solvent
,”
Environ. Sci. Technol.
,
48
(
24
), pp.
14814
14821
.10.1021/es5041706
27.
Li
,
S.
,
Gao
,
L.
, and
Jin
,
H.
,
2014
, “
Coal Based Cogeneration System for Synthetic/Substitute Natural Gas and Power With CO2 Capture After Methanation: Coupling Between Chemical and Power Production
,”
ASME J. Eng. Gas Turbine Power
,
136
(
9
), p.
091501
.10.1115/1.4026928
28.
Li
,
S.
,
Jin
,
H.
, and
Gao
,
L.
,
2013
, “
Cogeneration of Substitute Natural Gas and Power From Coal by Moderate Recycle of the Chemical Unconverted Gas
,”
Energy
,
55
, pp.
658
667
.10.1016/j.energy.2013.03.090
29.
Bishnoi
,
S.
, and
Rochelle
,
G. T.
,
2000
, “
Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility
,”
Chem. Eng. Sci.
,
55
(22), pp.
5531
5543
.10.1016/S0009-2509(00)00182-2
30.
Li
,
S.
,
Jin
,
H.
,
Gao
,
L.
, and
Zhang
,
X.
,
2014
, “
Exergy Analysis and the Energy Saving Mechanism for Coal to Synthetic/Substitute Natural Gas and Power Cogeneration System Without and With CO2 Capture
,”
Appl. Energy
,
130
, pp.
552
561
.10.1016/j.apenergy.2014.03.036
31.
Ishida
,
M.
, and
Kawamura
,
K.
,
1982
, “
Energy and Exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Energy Direction Factor Diagram
,”
Ind. Eng. Chem. Process. Des. Dev.
,
21
(4), pp.
690
695
.10.1021/i200019a025
32.
Jin
,
H.
,
Kobayashi
,
M.
,
Nunokawa
,
M.
, and
Ishida
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
.10.1115/1.2794998
You do not currently have access to this content.