Analyses of fracturing and thermal performance of fractured reservoirs in engineered geothermal system (EGS) are extended from a depth of 5 km to 10 km, and models for flow and heat transfer in EGS are improved. Effects of the geofluid flow direction choice, distance between fractures, fracture width, permeability, radius, and number of fractures, on reservoir heat drawdown time are computed. The number of fractures and fracture radius for desired reservoir thermal drawdown rates are recommended. A simplified model for reservoir hydraulic fracturing energy consumption is developed, indicating it to be 51.8–99.6 MJ per m3 fracture for depths of 5–10 km.

References

References
1.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
137
(
4
), p.
041201
.10.1115/1.4028138
2.
Tester
,
J. W.
,
Anderson
,
B.
,
Batchelor
,
A.
,
Blackwell
,
D.
,
DiPippo
,
R.
,
Drake
,
E.
,
Garnish
,
J.
,
Livesay
,
B.
,
Moore
,
M. C.
,
Nichols
,
K.
,
Petty
,
S.
,
Toksoz
,
M. N.
,
Veatch
,
R. W.
,
Baria
,
R.
,
Augustine
,
C.
,
Murphy
,
E.
,
Negraru
,
P.
, and
Richards
,
M.
,
2006
,
The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century
,
Massachusetts Institute of Technology
,
Cambridge
, p.
209
.
3.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
132
(
2
), p.
021009
.10.1115/1.4001574
4.
DiPippo
,
R.
,
2005
,
Geothermal Power Plants: Principles, Applications and Case Studies
,
Elsevier
,
Oxford/New York
.
5.
Augustine
,
C. R.
,
2009
, “
Hydrothermal Spallation Drilling and Advanced Energy Conversion Technologies for Engineered Geothermal Systems
,” Ph.D., thesis, MIT, Cambridge.
6.
Kruger
,
P.
, and
Otte
,
C.
,
1973
,
American Nuclear Society, Geothermal Energy; Resources, Production, Stimulation
,
Stanford University Press
,
Stanford, CA
.
7.
O'Sullivan
,
M. J.
,
Pruess
,
K.
, and
Lippmann
,
M. J.
,
2001
, “
State of the Art of Geothermal Reservoir Simulation
,”
Geothermics
,
30
(
4
), pp.
395
429
.10.1016/S0375-6505(01)00005-0
8.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.10.1115/1.1791651
9.
Armstead
,
H. C. H.
, and
Tester
,
J. W.
,
1986
,
Heat Mining
,
Methuen
,
New York
.
10.
Fox
,
D. B.
,
Sutter
,
D.
,
Beckers
,
K. F.
,
Lukawski
,
M. Z.
,
Koch
,
D. L.
,
Anderson
,
B. J.
, and
J. W.
Tester
,
2013
, “
Sustainable Heat Farming: Modeling Extraction and Recovery in Discretely Fractured Geothermal Reservoirs
,”
Geothermics
,
46
(
4
), pp.
42
54
.10.1016/j.geothermics.2012.09.001
12.
Kelkar
,
S.
,
Lewis
,
K.
,
Hickman
,
S.
,
Davatzes
,
N. C.
,
Moos
,
D.
, and
Zyvoloski
,
G.
,
2012
, “
Modeling Coupled Thermal-Hydrological-Mechanical Processes During Shear Stimulation of an EGS Well
,”
Thirty-Seventh Workshop on Geothermal Reservoir Engineering
, Stanford University, Stanford.
13.
De Simone
,
S.
,
Vilarrasa
,
V.
,
Carrera
,
J.
,
Alcolea
,
A.
, and
Meier
,
P.
,
2013
, “
Thermal Coupling May Control Mechanical Stability of Geothermal Reservoirs During Cold Water Injection
,”
Phys. Chem. Earth, Parts A/B/C
,
64
, pp.
117
126
.10.1016/j.pce.2013.01.001
14.
Yoon
,
J. S.
,
Zang
,
A.
, and
Stephansson
,
O.
,
2014
, “
Numerical Investigation on Optimized Stimulation of Intact and Naturally Fractured Deep Geothermal Reservoirs Using Hydro-Mechanical Coupled Discrete Particles Joints Model
,”
Geothermics
,
52
(10), pp.
165
184
.10.1016/j.geothermics.2014.01.009
15.
Gidley
,
J. L.
,
1989
,
Recent Advances in Hydraulic Fracturing
,
Society of Petroleum Engineers
,
Richardson
.
16.
Geertsma
,
J.
, and
De Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
,
21
(
12
), pp.
1571
1581
.10.2118/2458-PA
17.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(4), p.
042905
.10.1115/1.4028690
18.
The MathWorks, Inc.,
2012
, Version 2012a, MATLAB, Natick, MA.
19.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Hot Water Generation for Oil Sands Processing From Enhanced Geothermal Systems: Process Simulation for Different Hydraulic Fracturing Scenarios
,”
Appl. Energy
,
113
(1), pp.
524
547
.10.1016/j.apenergy.2013.07.060
20.
Finsterle
,
S.
,
Zhang
,
Y.
,
Pan
,
L.
,
Dobson
,
P.
, and
Oglesby
,
K.
,
2013
, “
Microhole Arrays for Improved Heat Mining From Enhanced Geothermal Systems
,”
Geothermics
,
47
(7), pp.
104
115
.10.1016/j.geothermics.2013.03.001
21.
Cerminara
,
M.
, and
Fasano
,
A.
,
2012
, “
Modeling the Dynamics of a Geothermal Reservoir Fed by Gravity Driven Flow Through Overstanding Saturated Rocks
,”
J. Volcanol. Geotherm. Res.
,
233
(7), pp.
37
54
.10.1016/j.jvolgeores.2012.03.005
22.
Taleghani
,
A. D.
,
2013
, “
An Improved Closed-Loop Heat Extraction Method From Geothermal Resources
,”
ASME J. Energy Resour. Technol.
,
135
(4), p.
042904
.10.1115/1.4023175
23.
McFarland
,
R. D.
, and
Murphy
,
H.
,
1976
,
Extracting Energy From Hydraulically-Fractured Geothermal Reservoir
,
Los Alamos Scientific Laboratory
,
Los Alamos
.
24.
C Multiphysics
,
2012
,
Version 4.3 a
,
COMSOL
,
Burlington, MA
.
25.
Hu
,
L.
,
Winterfeld
,
P. H.
,
Fakcharoenphol
,
P.
, and
Wu
,
Y.
,
2013
, “
A Novel Fully-Coupled Flow and Geomechanics Model in Enhanced Geothermal Reservoirs
,”
J. Pet. Sci. Eng.
,
107
(7), pp.
1
11
.10.1016/j.petrol.2013.04.005
26.
Zeng
,
Y.
,
Wu
,
N.
,
Su
,
Z.
, and
Hu
,
J.
,
2014
, “
Numerical Simulation of Electricity Generation Potential From Fractured Granite Reservoir Through a Single Horizontal Well at Yangbajing Geothermal Field
,”
Energy
,
65
(2), pp.
472
487
.10.1016/j.energy.2013.10.084
27.
Zeng
,
Y.
,
Su
,
Z.
, and
Wu
,
N.
,
2013
, “
Numerical Simulation of Heat Production Potential From Hot Dry Rock by Water Circulating Through Two Horizontal Wells at Desert Peak Geothermal Field
,”
Energy
,
56
(
7
), pp.
92
107
.10.1016/j.energy.2013.04.055
28.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
,
4th ed.
,
McGraw-Hill
,
New York
.
29.
Li
,
M.
,
2013
,
Energy and Exergy Analysis of Deep Engineered Geothermal System Energy Extraction and Power Generation
,” M.S. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia.
30.
Li
,
M.
, and
Lior
,
N.
,
2014
, “
Comparative Analysis of Power Plant Options for Enhanced Geothermal Systems (EGS)
,”
Energies
,
7
(
12
), pp.
8427
8445
.10.3390/en7128427
31.
Klein
,
S.
, and
Alvarado
,
F.
,
2002
,
Engineering Equation Solver
,
F-Chart Software
,
Madison
.
32.
“U.S Energy Information Administration,” http://www.eia.gov/totalenergy/data/annual/pdf/sec17_3.pdf
You do not currently have access to this content.