The ultimate goal of this work is to determine the minimum flow rates necessary for effective transport of sand in a pipeline carrying multiphase flow. In order to achieve this goal, an experimental study is performed in a horizontal pipeline using water and air as carrier fluids. In this study, successful transport of sand is defined as the minimum flow rates of water and air at which all sand grains continue to move along in the pipe. The obtained data cover a wide range of liquid and gas flow rates including stratified and intermittent flow regimes. The effect of physical parameters such as sand size, sand shape, and sand concentration is experimentally investigated in 0.05 and 0.1 m internal diameter pipes. The comparisons of the obtained data with previous studies show good agreement. It is concluded that the minimum flow rates required to continuously move the sand increases with increasing sand size in the range examined and particle shape does not significantly affect sand transport. Additionally, the data show the minimum required flow rates increase by increasing sand concentration for the low concentrations considered, and this effect should be taken into account in the modeling of multiphase sand transport.

References

References
1.
Durand
,
R.
,
1952
,
The Hydraulic Transportation of Coal and Other Materials in Pipes
,
College of National Coal Board
,
London, UK
.
2.
Patterson
,
R.
,
1959
, “
Pulverized-Coal Transport Through Pipes
,”
ASME J. Eng. Power
,
81
(
1
), pp.
43
52
.
3.
Parsi
,
M.
,
Najmi
,
K.
,
Najafifard
,
F.
,
Hassani
,
S.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2014
, “
A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
,”
Journal of Natural Gas Science and Engineering,
21
, pp.
850
873
.
4.
Durand
,
R.
,
1953
, “
Basic Relationships of the Transportation of Solids in Pipes—Experimental Research
,”
The Minnesota International Hydraulics Convention
, University of Minnesota, Minneapolis, MN, pp.
89
103
.
5.
Spells
,
K.
,
1955
, “
Correlations for Use in Transport of Aqueous Suspensions of Fine Solids Through Pipes
,”
Trans. Inst. Chem. Eng.
,
33
, pp.
79
84
.
6.
Thomas
,
D.
,
1961
, “
Transport Characteristics of Suspensions: II. Minimum Transport Velocity for Flocculated
,”
AIChE J.
,
7
(
3
), pp.
423
430
.10.1002/aic.690070316
7.
Thomas
,
D.
,
1962
, “
Transport Characteristics of Suspensions: Part IV. Friction Loss of Concentrated-Flocculated Suspensions in Turbulent Flow
,”
AIChE J.
,
8
(
2
), pp.
266
271
.10.1002/aic.690080227
8.
Thomas
,
D.
,
1962
, “
Transport Characteristics of Suspensions: Part VI. Minimum Transport Velocity for Large Particle Size
,”
AIChE J.
,
8
(
3
), pp.
373
378
.10.1002/aic.690080323
9.
Wasp
,
E. J.
,
Aude
,
T. C.
,
Kenny
,
J. P.
,
Seiter
,
R. H.
, and
Jacques
,
R. B.
,
1970
, “
Deposition Velocities, Transition Velocities, and Spatial Distribution of Solids in Slurry Pipelines
,”
First International Conference on the Hydraulic Transport of Solids in Pipes
, The University of Warwick, Coventry, UK, pp. 53–76.
10.
Wicks
,
M.
,
1971
, “
Transport of Solids at Low Concentration in Horizontal Pipes
,”
Advances in Solid–Liquid Flow in Pipes and Its Application
,
I.
Zandi
, ed., Pergamon, PA, pp.
101
124
.
11.
Thomas
,
A.
,
1979
, “
Predicting the Deposit Velocity for Horizontal Turbulent Pipe Flow of Slurries
,”
Int. J. Multiphase Flow
,
5
(
2
), pp.
113
129
.10.1016/0301-9322(79)90040-5
12.
Wilson
,
K.
, and
Watt
,
W.
,
1974
, “
Influence of Particle Diameter on the Turbulent Support of Solids in Pipeline Flow
,”
Third International Conference on the Hydraulic Transport of Solids in Pipes
, May 15–17, Golden, CO, p. 7.
13.
Oroskar
,
A. R.
, and
Turian
,
R. M.
,
1980
, “
The Critical Velocity in Pipeline Flow of Slurries
,”
AIChE J.
,
26
(
4
), pp.
550
558
.10.1002/aic.690260405
14.
Turian
,
R.
,
Hsu
,
F.-L.
, and
Ma
,
T.-W.
,
1987
, “
Estimation of the Critical Velocity in Pipeline Flow of Slurries
,”
Powder Technol.
,
51
(
1
), pp.
35
47
.10.1016/0032-5910(87)80038-4
15.
Davies
,
J. T.
,
1987
, “
Calculation of Critical Velocities to Maintain Solids in Suspension in Horizontal Pipes
,”
Chem. Eng. Sci.
,
42
(
7
), pp.
1667
1670
.10.1016/0009-2509(87)80171-9
16.
Ponagandla
,
V.
,
2008
, “
Critical Deposition Velocity Method for Dispersed Sand Transport in Horizontal Flow
,” M.S. thesis, The University of Tulsa, Tulsa, OK.
17.
Najmi
,
K.
,
Shirazi
,
S. A.
,
Cremaschi
,
S.
, and
McLaury
,
B. S.
,
2013
, “
A Generalized Model for Predicting Critical Deposition Velocity for Particle Entrained in Horizontal Liquid and Gas Pipe Flows
,”
ASME
Paper No. FEDSM2013-16251.10.1115/FEDSM2013-16251
18.
Soepyan
,
B.
,
Cremaschi
,
S.
,
Sarica
,
C.
,
Subramani
,
H.
, and
Kouba
,
G.
,
2014
, “
Solids Transport Models Comparison and Fine-Tuning for Horizontal, Low Concentration Flow in Single-Phase Carrier Fluid
,”
AIChE J.
,
60
(
1
), pp.
76
122
.10.1002/aic.14255
19.
Al-lababidi
,
S.
,
Yan
,
W.
, and
Yeung
,
H.
,
2012
, “
Sand Transportation and Deposition Characteristics in Multiphase Flows in Pipelines
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), pp.
1
13
.10.1115/1.4006433
20.
Zenz
,
F.
,
1949
, “
Two-Phase Fluid–Solid Flow
,”
Ind. Eng. Chem.
,
41
(
12
), pp.
2801
2806
.10.1021/ie50480a032
21.
Yufin
,
A. P.
,
1949
, “
The Motion of Nonhomogeneous Fluids Through Horizontal Partly Filled Steel Tubes
,”
Proc. USSR Acad. Sci.
,
8
, p. 1146.
22.
Yotsukura
,
N.
,
1961
, “
Some Effects of Bentonite Suspensions on Sand Transport in a Smooth Four-Inch Pipe
,” Ph.D. dissertation, Colorado State University, Fort Collins, CO.
23.
Sinclair
,
C.
,
1962
, “
The Limit Deposit-Velocity of Heterogeneous Suspensions
,”
Symposium on the Interaction Between Fluids and Particles
, Third Congress of the European Federation of Chemical Engineers, London, UK.
24.
Graf
,
W.
,
Robinson
,
M.
, and
Yucel
,
O.
,
1970
, “
Critical Velocity for Solid–Liquid Mixtures; the Lehigh Experiments
,” Fritz Laboratory Reports, Bethlehem, PA, Report No. 353.1.
25.
Avci
,
I.
,
1981
,
Experimentally Determination of Critical Flow Velocity in Sediment Carrying Pipeline Systems
,
Istanbul Technical University
,
Istanbul, Turkey
.
26.
Parzonka
,
W.
,
Kenchington
,
J.
, and
Charles
,
M.
,
1981
, “
Hydrotransport of Solids in Horizontal Pipes: Effects of Solids Concentration and Particle Size on the Deposit Velocity
,”
Can. J. Chem. Eng.
,
59
(
3
), pp.
291
296
.10.1002/cjce.5450590305
27.
Kokpinar
,
M.
, and
Gogus
,
M.
,
2001
, “
Critical Flow Velocity in Slurry Transporting Horizontal Pipelines
,”
J. Hydraul. Eng.
,
127
(
9
), pp.
763
771
.10.1061/(ASCE)0733-9429(2001)127:9(763)
28.
Arevalo
,
B.
,
2010
, “
Experimental Investigation of Critical Velocities for Sand Transport in Horizontal Single and Two-Phase Flows at Low Sand Concentrations and Comparisons With Existing Models
,” M.Sc. thesis, The University of Tulsa, Tulsa, OK.
29.
Delavan
,
M. A.
,
2012
, “
Comparison of Experimental Models to Literature Data and Effects of Viscosity in Sand Transportation
,” M.Sc. thesis, The University of Tulsa, Tulsa, OK.
30.
Saks
,
S. E.
,
1970
, “
Determination of the Critical Velocity of Suspension Conveying Flows
,”
Heat Transfer Sov. Res.
,
2
(
6
), pp.
23
29
.
31.
Halow
,
J. S.
,
1973
, “
Incipient Rolling, Sliding and Suspension of Particles in Horizontal and Inclined Turbulent Flow
,”
Chem. Eng. Sci.
,
28
(
1
), pp.
1
12
.10.1016/0009-2509(73)85080-8
32.
Cabrejos
,
F. J.
, and
Klinzing
,
G. E.
,
1992
, “
Incipient Motion of Solid Particles in Horizontal Pneumatic Conveying
,”
Powder Technol.
,
72
(
1
), pp.
51
61
.10.1016/S0032-5910(92)85021-M
33.
Hayden
,
K.
,
Park
,
K.
, and
Curtis
,
J.
,
2003
, “
Effect of Particle Characteristics on Particle Pickup Velocity
,”
Powder Technol.
,
131
(
1
), pp.
7
14
.10.1016/S0032-5910(02)00135-3
34.
Rabinovich
,
E.
, and
Kalman
,
H.
,
2009
, “
Incipient Motion of Individual Particles in Horizontal Particle–Fluid Systems: A. Experimental Analysis
,”
Powder Technol.
,
192
(
3
), pp.
318
325
.10.1016/j.powtec.2009.01.013
35.
Gomes
,
L.
, and
Mesquita
,
A.
,
2013
, “
Effect of Particle Size and Sphericity on the Pickup Velocity in Horizontal Pneumatic Conveying
,”
Chem. Eng. Sci.
,
104
(
18
), pp.
780
789
.10.1016/j.ces.2013.08.055
36.
Zenz
,
F.
,
1964
, “
Conveyability of Materials of Mixed Particle Size
,”
Ind. Eng. Chem. Fundam.
,
3
(
1
), pp.
65
75
.10.1021/i160009a012
37.
Rose
,
H.
, and
Duckworth
,
R.
,
1969
, “
Transport of Solid Particles in Liquids and Gases
,”
Engineer
,
203
(
5290
), pp.
898
901
, 939–941.
38.
Cabrejos
,
F.
, and
Klinzing
,
G.
,
1994
, “
Minimum Conveying Velocity in Horizontal Pneumatic Transport and the Pickup and Saltation Mechanisms of Solid Particles
,”
Bulk Solids Handl.
,
14
(
3
), pp.
541
550
.
39.
Villareal
,
J.
, and
Klinzing
,
G.
,
1994
, “
Pickup Velocities Under Higher Pressure Conditions
,”
Powder Technol.
,
80
(
2
), pp.
179
182
.10.1016/0032-5910(94)02851-6
40.
Hubert
,
M.
, and
Kalman
,
H.
,
2004
, “
Measurements and Comparison of Saltation and Pickup Velocities in Wind Tunnel
,”
Granular Matter
,
6
(
2–3
), pp.
159
165
.10.1007/s10035-004-0166-x
41.
Holte
,
S.
,
Angelsen
,
S.
,
Kvernvold
,
O.
, and
Rasder
,
J. H.
,
1987
, “
Sand Bed Formation in Horizontal and Near Horizontal Gas–Liquid–Sand Flow
,”
The European Two-Phase Flow Group Meeting
, Trondheim, Norway, p. 205.
42.
Angelsen
,
S.
,
Kvernvold
,
O.
,
Lingelem
,
M.
, and
Olsen
,
S.
,
1989
, “
Long-Distance Transport of Unprocess HC Sand Settling in Multiphase Pipelines
,”
The Fourth International Conference on Multiphase Flow
, Nice, France, pp.
19
21
.
43.
Oudeman
,
P.
,
1993
, “
Sand Transport and Deposition in Horizontal Multiphase Trunklines of Subsea Satellite Developments
,”
SPE Prod. Facil.
,
4
(
8
), pp.
237
241
.10.2118/25142-PA
44.
Gillies
,
R. G.
,
Mckibben
,
M.
, and
Shook
,
C.
,
1997
, “
Pipeline Flow of Gas, Liquid and Sand Mixtures at Low Velocities
,”
J. Can. Pet. Technol.
,
9
(
36
), pp.
36
42
.10.2118/97-09-03
45.
Meyer-Peter
,
E.
, and
Muller
,
R.
,
1948
, “
Formulas for Bed-Load Transport
,”
The 2nd Congress of the International Association for Hydraulic Research
, Stockholm, Sweden, pp. 39–64.
46.
Salama
,
M.
,
2000
, “
Sand Production Management
,”
ASME J. Energy Resour. Technol.
,
122
(
1
), pp.
29
33
.10.1115/1.483158
47.
King
,
M.
,
Farhurst
,
C.
, and
Hill
,
T.
,
2001
, “
Solids Transport in Multiphase Flows Application to High Viscosity Systems
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
200
204
.10.1115/1.1385382
48.
Stevenson
,
P.
,
Thrope
,
R. B.
,
Kennedy
,
J. E.
, and
McDermott
,
C.
,
2001
, “
The Transport of Particles at Low Loading in Near-Horizontal Pipes by Intermittent Flow
,”
Chem. Eng. Sci.
,
56
(
6
), pp.
2149
2159
.10.1016/S0009-2509(00)00491-7
49.
Stevenson
,
P.
, and
Thrope
,
R.
,
2002
, “
Velocity of Isolated Particles Along a Pipe in Smooth Stratified Gas Liquid Flow
,”
AIChE J.
,
48
(
5
), pp.
963
969
.10.1002/aic.690480506
50.
Al-Mutahar
,
F.
,
2006
, “
Modeling of Critical Deposition Velocity of Sand in Horizontal and Inclined Pipes
,” M.Sc. thesis, The University of Tulsa, Tulsa, OK.
51.
Danielson
,
T.
,
1997
, “
Sand Transport Modeling in Multiphase Pipelines
,”
Offshore Technology Conference
, Houston, TX, Paper No. 18691.
52.
Hill
,
A. L.
,
2011
, “
Determining the Critical Flow Rates for Low Concentration Sand Transport in Two-Phase Pipe Flow by Experimentation and Modeling
,” M.Sc. thesis, The University of Tulsa, Tulsa, OK.
53.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transition in Horizontal and Near Horizontal Gas–Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.10.1002/aic.690220105
54.
Najmi
,
K.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Cremaschi
,
S.
,
2014
, “
Experimental Study of Low Concentration Sand Transport in Low Liquid Loading Water–Air Flow in Horizontal Pipes
,”
The 9th North American Conference on Multiphase Technology
, BHRGroup, Banff, Canada, pp.
17
27
.
55.
Zhang
,
H. Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
2003
, “
Unified Model for Gas–Liquid Pipe Flow Via Slug Dynamics—Part 1: Model Development
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
266
273
.10.1115/1.1615246
56.
Stevenson
,
P.
,
Thrope
,
R.
, and
Davidson
,
J.
,
2002
, “
Incipient Motion of a Small Particle in the Viscous Boundary Layer at a Pipe Wall
,”
Chem. Eng. Sci.
,
57
(
21
), pp.
4505
4520
.10.1016/S0009-2509(02)00418-9
You do not currently have access to this content.