Wellbore models are required for integrated reservoir management studies as well as optimization of production operations. Distributed temperature sensing (DTS) is a smart well technology deployed for permanent downhole monitoring. It measures temperature via fiber optic sensors installed along horizontal wellbores. Correct interpretation of DTS surveys has thus become of utmost importance and analytical models for analysis of temperature distribution behavior are critical. In this study, we first show how thermodynamic analysis can describe in detail the physical changes in terms of pressure and temperature behavior from the simplest cases of “leaky tank” to the horizontal wellbore itself. Subsequently, rigorous single-phase thermodynamic models for energy, entropy, and enthalpy changes in horizontal wellbores are derived starting from 1D conservative mass, momentum, and energy balance equations and a generalized thermal models, along with their steady-state temperature profile subsets, are presented. Steady-state applications are presented and discussed. The analysis presents the factors controlling horizontal wellbore steady-state temperature responses and demonstrates that wellbore thermal responses are neither isentropic nor isenthalpic and that the isentropic expansion-driven models and Joule–Thompson-coefficient (JTC) driven may be used interchangeably to analysis horizontal wellbore thermal responses.

References

References
1.
Ramey
, Jr.,
H. J.
,
1962
, “
Wellbore Heat Transmission
,”
J. Pet. Technol.
,
427
, pp.
225
–435.
2.
Alves
,
I. N.
,
Alhanati
,
F. J. S.
, and
Shoham
,
O.
,
1992
, “
A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines
,” SPE Production Engineering,
SPE Paper No. 20632
, pp.
363
367
.10.2118/20632-PA
3.
Hassan
,
A. R.
, and
Kabir
,
C. S.
,
1994
, “
Aspect of Heat Transfer During Two-phase Flow in Wellbores
,” SPE Paper No. 22948, SPE Prod. Facilities,
9
(3), pp. 211–216.
4.
Hassan
,
A. R.
, and
Kabir
,
C. S.
,
2002
,
Fluid Flow and Heat Transfer in Wellbores
,
Society of Petroleum Engineers
,
Richardson
, TX.
5.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
, and
Lake
,
L. W.
,
2005
, “
Interpretation of Temperature and Pressure Profiles Measured in Multilateral Wells Equipped With Intelligent Completion
,”
SPE Europec/EAGE Annual Conference
, Madrid, Spain, June 13–16,
SPE Paper No. 94097
.10.2118/94097-MS
6.
Yoshioka
,
K.
,
Zhu
,
D.
,
Hill
,
A. D.
,
Dawkrajai
,
P.
, and
Lake
,
L. W.
,
2005
, “
A Comprehensive Model of Temperature Behavior in a Horizontal Well
,”
2005 SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 9–12,
SPE Paper No. 95656
.10.2118/95656-MS
7.
Pourafshary
,
P.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Podio
,
A. L.
,
2008
, “
A Compositional Wellbore/Reservoir Simulator to Model Multiphase Flow and Temperature Distribution
,”
J. Pet. Sci. Eng.
,
69
(1–2), pp. 40–5210.1016/j.petrol.2009.02.012.
8.
Li
,
Z.
, and
Zhu
,
D.
,
2009
, “
Predicting Flow Profile of Horizontal Well by Downhole Pressure and DTS Data for Water-Drive Reservoir
,” paper presented at the
2009 SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Oct. 4–7, SPE 124873.
9.
Livescu
,
S.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
, and
Ginestra
,
J.-C.
,
2010
, “
A Fully-Coupled Multiphase Wellbore Flow Model for Use in Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
71
(
3–4
), pp.
138
146
.10.1016/j.petrol.2009.11.022
10.
Radespiel
,
E.
,
2010
, “
A Comprehensive Model Describing Temperature Behavior in Horizontal Wells
,” Ph.D. dissertation, The Pennsylvania State University, University Park, PA.
11.
Vicente
,
R.
,
Ertekin
,
T.
, and
Sarica
,
C.
,
2004
, “
A Numerical Model Coupling Reservoir and Horizontal Well Flow Dynamics—Applications in Well Completions, and Production Logging
,”
ASME J. Energy Res. Technol.
,
126
(
3
), pp.
169
176
.10.1115/1.1789522
12.
Muradov
,
K. M.
, and
Davis
,
D. R.
,
2009
, “
Temperature Modeling and Analysis of Wells With Advance Completion
,”
EUROPEC/EAGE Conference and Exhibition
, Amsterdam, The Netherlands, June 8–11,
SPE Paper No. 121054
.10.2118/121054-MS
13.
Muradov
,
K. M.
, and
Davis
,
D. R.
,
2012
, “
Temperature Transient Analysis in a Horizontal, Multi-Zone, Intelligent Well
,” SPE Intelligent Energy International, Utrecht, The Netherlands, Mar. 27–29,
SPE Paper 150138
.10.2118/150138-MS
14.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Heat in Solids
,
Clarendon Press
,
Oxford
.
15.
Tian
,
S.
, and
Finger
,
J. T.
,
2000
, “
Advanced Geothermal Wellbore Hydraulics Model
,”
ASME J. Energy Res. Technol.
,
122
(
3
), pp.
142
146
.10.1115/1.1289391
16.
Ayala
,
H. L. F.
, and
Adewumi
,
M.
,
2003
, “
Low-Liquid Loading Multiphase Flow in Natural Gas Pipelines
,”
ASME J. Energy Res. Technol.
,
125
(
4
), pp.
284
293
.10.1115/1.1616584
17.
Ayala
,
H. L. F.
, and
Alp
,
D.
,
2008
, “
Limitations of Marching Algorithms in the Analysis of Multiphase Flow in Pipelines
,”
ASME J. Energy Res. Technol.
,
130
(
4
), pp.
4300301
4300310
.10.1115/1.3000103
18.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2006
,
Transport Phenomena
,
revised 2nd ed.
,
Wiley
,
New York
.
19.
Wilkes
,
J. O.
,
2005
,
Fluid Mechanics for Chemical Engineers
,
2nd ed.
,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
20.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
296
297
.10.1021/i160071a019
21.
Lorentz
,
J.
,
Bray
,
B.
, and
Clark
,
C.
,
1964
, “
Calculating Viscosities of Reservoir Fluids From Their Composition
,”
J. Pet. Technol.
,
16
(
10
), SPE Paper No. 915, pp.
1171
1176
.10.2118/915-PA
22.
Lee
,
A. L.
,
Gonzalez
,
M. H.
, and
Eakin
,
B. E.
,
1966
, “
The Viscosity of Natural Gases
,”
J. Pet. Technol.
,
18
(
8
), SPE Paper No. 1340, pp.
997
1000
.10.2118/1340-PA
You do not currently have access to this content.