With the ever-rising concern of global warming, carbon capture is gaining the reputation of one of the most challenging fields of research. A very promising technology to capture CO2 is oxy-combustion. Oxy-combustion offers several advantages over conventional combustion technologies, such as flue–gas volume reduction, high combustion efficiency, low fuel consumption, and significant reduction in NOx emissions. Liquid fuel is available and it is the most widely used source of energy in the world. Easy handling and transporting, less storage volume and higher flame temperature are some of the features of liquid fuel which give it an upper hand over other sources. In this study, an experimental work on oxygen enriched combustion of ethanol in a vertical reactor by Lacas et al. (2005, “Experimental Study of Air Dilution in Oxy-Liquid Fuel Flames,” Proc. Combust. Inst., 30(2), pp. 2037–2045) has been modeled numerically. Nonpremixed model using probability density function (PDF) has been incorporated to simulate the combustion process of ethanol droplets. Predicted combustion characteristics are found to be in good compliance with the experimental data. In addition to this, effects of dilution of carbon dioxide in oxygen on the flame properties have also been presented. Combustion of ethanol in oxygen–carbon dioxide environment has been compared with that of the conventional air environment.

References

References
1.
Solomon
,
S.
,
Qin
,
D.
,
Manning
,
M.
,
Chen
,
Z.
,
Marquis
,
M.
,
Averyt
,
K. B.
,
Miller
,
H. L.
, and
Tignor
,
M.
,
2007
,
Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC
,
Cambridge University
,
Cambridge, MA
, p.
996
.
2.
Park
,
S.
,
Kim
,
T.
,
Sohn
,
J.
, and
Lee
,
Y.
,
2011
, “
An Integrated Power Generation System Combining Solid Oxide Fuel Cell and Oxy-Fuel Combustion for High Performance and CO2 Capture
,”
Appl. Energy
,
88
(
4
), pp.
1187
1196
.10.1016/j.apenergy.2010.10.037
3.
Dyer
,
P.
,
Richards
,
R.
,
Russek
,
S.
, and
Taylor
,
D.
,
2000
, “
Ion Transport Membrane Technology for Oxygen Separation and Syngas Production
,”
Solid State Ionics
,
134
(
1–2
), pp.
21
33
.10.1016/S0167-2738(00)00710-4
4.
Zhang
,
N.
, and
Lior
,
N.
,
2008
, “
Two Novel Oxy-Fuel Power Cycles Integrated With Natural Gas Reforming and CO2 Capture
,”
Energy
,
33
(
2
), pp.
340
351
.10.1016/j.energy.2007.09.006
5.
Li
,
T.
,
Nishida
,
K.
, and
Hiroyasu
,
H.
,
2011
, “
Droplet Size Distribution and Evaporation Characteristics of Fuel Spray by a Swirl Type Atomizer
,”
Fuel
,
90
(
7
), pp.
2367
2376
.10.1016/j.fuel.2011.03.011
6.
Ghassemi
,
H.
,
Baek
,
S. W.
, and
Khan
,
Q. S.
,
2006
, “
Experimental Study on Evaporation of Kerosene Droplets at Elevated Pressures and Temperatures
,”
Combust. Sci. Technol.
,
178
(
9
), pp.
1669
1684
.10.1080/00102200600582392
7.
Negeed
,
E.-S. R.
,
Ishihara
,
N.
,
Tagashira
,
K.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2010
, “
Experimental Study on the Effect of Surface Conditions on Evaporation of Sprayed Liquid Droplet
,”
Int. J. Therm. Sci.
,
49
(
12
), pp.
2250
2271
.10.1016/j.ijthermalsci.2010.08.008
8.
Bhattacharya
,
P.
,
Ghosal
,
S.
, and
Som
,
S. K.
,
1996
, “
Evaporation of Multicomponent Liquid Fuel Droplets
,”
Int. J. Energy Res.
,
20
(5), pp.
385
398
.10.1002/(SICI)1099-114X(199605)20:5<385::AID-ER157>3.0.CO;2-E
9.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.10.1016/j.proci.2010.05.105
10.
Kamal
,
M. M.
, and
Mohamad
,
A. A.
,
2007
, “
Investigation of Liquid Fuel Combustion in a Cross-Flow Burner
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
3
), pp.
371
385
.10.1243/09576509JPE367
11.
Heyes
,
A. L.
,
Jelerčič
,
D.
, and
Whitelaw
,
J. H.
,
1998
, “
Experiments in a Small Gas-Turbine Combustor With Gas and Liquid Fuels
,”
RTO MP
,
14
, pp.
12
16
.
12.
Yang
,
F.
,
Li
,
J.
,
Zhou
,
Z.
,
Zhang
,
X.
, and
Wang
,
N.
,
2011
, “
Experimental Research on Combustion Characteristics of Liquid Fuel in Straight Tubes
,”
Proceedings of the 7th International Symposium on Coal Combustion
, Springer Berlin Heidelberg, Germany, pp. 245–251.10.1007/978-3-642-30445-3_37
13.
Lacas
,
F.
,
Leroux
,
B.
, and
Darabiha
,
N.
,
2005
, “
Experimental Study of Air Dilution in Oxy-Liquid Fuel Flames
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2037
2045
.10.1016/j.proci.2004.08.084
14.
Van Blarigan
,
A.
,
Kozarac
,
D.
,
Seiser
,
R.
,
Cattolica
,
R.
,
Chen
,
J.-Y.
, and
Dibble
,
R.
,
2013
, “
Experimental Study of Methane Fuel Oxycombustion in a Spark-Ignited Engine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012203
.10.1115/1.4024974
15.
Quesito
,
F.
,
Santarelli
,
M.
,
Leone
,
P.
, and
Aggarwal
,
S. K.
,
2013
, “
Biogas Combustion in Premixed Flames or Electrochemical Oxidation in SOFC: Exergy and Emission Comparison
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021201
.10.1115/1.4023173
16.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.10.1115/1.4007911
17.
Barajas
,
P. E.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2012
, “
Combustion Characteristics of Biofuels in Porous-Media Burners at an Equivalence Ratio of 0.8
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021004
.10.1115/1.4006046
18.
Okasha
,
F.
,
2007
, “
Modeling of Liquid Fuel Combustion in Fluidized Bed
,”
Fuel
,
86
(
15
), pp.
2241
2253
.10.1016/j.fuel.2007.01.014
19.
Ilamathi
,
P.
,
Selladurai
,
V.
, and
Balamurugan
,
K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032201
.10.1115/1.4023328
20.
Saario
,
A.
,
Rebola
,
A.
,
Coelho
,
P. J.
,
Costa
,
M.
, and
Oksanen
,
A.
,
2005
, “
Heavy Fuel Oil Combustion in a Cylindrical Laboratory Furnace: Measurements and Modeling
,”
Fuel
,
84
(
4
), pp.
359
369
.10.1016/j.fuel.2004.10.002
21.
Eaton
,
A. M.
,
Smoot
,
L. D.
,
Hill
,
S. C.
, and
Eatough
,
C. N.
,
1999
, “
Components, Formulations, Solutions, Evaluation, and Application of Comprehensive Combustion Models
,”
Prog. Energy Combust. Sci.
,
25
(
4
), pp.
387
436
.10.1016/S0360-1285(99)00008-8
22.
Rohani
,
B.
,
Wahid
,
M. A.
,
Sies
,
M. M.
, and
Saqr
,
K. M.
,
2012
, “
Comparison of Eddy Dissipation Model and Presumed Probability Density Function Model for Temperature Prediction in a Non-Premixed Turbulent Methane Flame
,”
AIP Conf. Proc.
,
1440
(
1
), pp.
384
391
.10.1063/1.4704240
23.
Veynante
,
D.
, and
Vervisch
,
L.
,
2002
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
28
(
3
), pp.
193
266
.10.1016/S0360-1285(01)00017-X
24.
Versteeg
,
W.
, and
Malasekara
,
H. K.
,
1995
,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
,
Longman Group Ltd.
,
Harlow, UK
.
25.
Ranz
,
W.
, and
Marshall
,
W.
,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
26.
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2013
, “
Experimental and Numerical Investigations of an Atmospheric Diffusion Oxy-Combustion Flame in a Gas Turbine Model Combustor
,”
Appl. Energy
,
111
(11), pp.
401
415
.10.1016/j.apenergy.2013.05.027
27.
Wall
,
T.
,
Gupta
,
R.
,
Buhre
,
B.
, and
Khare
,
S.
,
2005
, “
Oxy-fuel (O2/CO2, O2/RFG) Technology For Sequestration-Ready CO2 and Emission Compliance
,”
Proceedings of the 30th International Technical Conference on Coal Utilization and Fuel Systems
, Cleanwater, FL, Apr. 17–21, pp.
523
534
.
28.
Andersson
,
K.
, and
Johnsson
,
F.
,
2007
, “
Flame and Radiation Characteristics of Gas-Fired O2/CO2 Combustion
,”
Fuel
,
86
(
5–6
), pp.
656
668
.10.1016/j.fuel.2006.08.013
29.
Liu
,
H.
,
Zailani
,
R.
, and
Gibbs
,
B.
,
2005
, “
Comparisons of Pulverized Coal Combustion in Air and in Mixtures of O2/CO2
,”
Fuel
,
84
(
7–8
), pp.
833
840
.10.1016/j.fuel.2004.11.018
30.
Habib
,
M. A.
,
Ben-Mansour
,
R.
,
Badr
,
H. M.
,
Ahmed
,
S. F.
, and
Ghoniem
,
A. F.
,
2012
, “
Computational Fluid Dynamic Simulation of Oxyfuel Combustion in Gas-Fired Water Tube Boilers
,”
Comput. Fluids
,
56
, pp.
152
165
.10.1016/j.compfluid.2011.12.009
You do not currently have access to this content.