An ultra lean mixture (ϕ ≤ 0.5) of methane–hydrogen–air was experimentally investigated to explore the effect of fuel flexibility on the flame stability and emission of a nonpremixed swirl stabilized combustor. In order to isolate the effect of hydrogen addition to methane, experiments were carried out at fixed fuel energy input to the combustor while increasing the hydrogen content from 0% up to 50% in the methane–hydrogen mixture on volume basis. The combustor fuel energy was then increased up to the range of typical gas turbine combustors. Equivalence ratio sweep was carried out to determine the lean stability limit of the combustor. Results show that the hydrogen content in the fuel mixture and fuel energy input have a coupled effect on the combustor lean blow off velocity (LBV), temperature and emissions. The LBV increases by ∼103% with the addition of 30% H2. On the other hand, the LBV increases by ∼20% as the fuel energy increases from 1.83 MW/m3 to 2.75 MW/m3. Burning under ultra lean condition serves two purposes. (1) The excess air supplied reduces the overall combustor temperature with its ensuing effect on low NOx formation. (2) It increases the overall combustor volume flow rate which reduces the residence time for NOx formation. The axial temperature profile presented along with the emission data can serve as basis for the validation of numerical models. This would give more insight onto the effect of hydrogen on the turbulence level and how it would improve the localized extinction of methane in a cost-effective way.

References

References
1.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
,
Miao
,
H.
, and
Wang
,
X.
,
2009
, “
Numerical Study of the Effect of Hydrogen Addition on Methane-Air Mixtures Combustion
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1084
1096
.10.1016/j.ijhydene.2008.11.010
2.
Karim
,
G. A.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.10.1016/S0360-3199(02)00150-7
3.
Wang
,
J.
,
Huang
,
Z.
,
Tang
,
C.
, and
Zheng
,
J.
,
2010
, “
Effect of Hydrogen Addition on Early Flame Growth of Lean Burn Natural Gas-Air Mixtures
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7246
7252
.10.1016/j.ijhydene.2010.01.004
4.
Bell
,
S. R.
, and
Gupta
,
M.
,
1997
, “
Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending
,”
Combust. Sci. Technol.
,
123
(
1–6
), pp.
23
48
.10.1080/00102209708935620
5.
Emadi
,
M.
,
Karkow
,
D.
,
Salameh
,
T.
,
Gohil
,
A.
, and
Ratner
,
A.
,
2012
, “
Flame Structure Changes Resulting From Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane-Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10397
10404
.10.1016/j.ijhydene.2012.04.017
6.
Ilbas
,
M.
,
Crayford
,
A. P.
,
Yilmaz
,
I.
,
Bowen
,
P. J.
, and
Syred
,
N.
,
2006
, “
Laminar-Burning Velocities of Hydrogen-Air and Hydrogen-Methane-Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
.10.1016/j.ijhydene.2005.12.007
7.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2005
, “
The Interaction of Flame and Flow Field in a Lean Premixed Swirl-Stabilized Combustor Operated on H2/CH4/Air
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2875
2883
.10.1016/j.proci.2004.07.021
8.
Zhang
,
Y.
,
Wu
,
J.
, and
Ishizuka
,
S.
,
2009
, “
Hydrogen Addition Effect on Laminar Burning Velocity, Flame Temperature and Flame Stability of a Planar and a Curved CH4/H2/Air Premixed Flame
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
519
527
.10.1016/j.ijhydene.2008.10.065
9.
Miao
,
H.
,
Jiao
,
Q.
,
Huang
,
Z.
, and
Jiang
,
D.
,
2008
, “
Effect of Initial Pressure on Laminar Combustion Characteristics of Hydrogen Enriched Natural Gas
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3876
3885
.10.1016/j.ijhydene.2008.04.029
10.
Littlejohn
,
D.
,
Noble
,
D. R.
,
Lieuwen
,
T.
, and
Cheng
,
R. K.
,
2009
, “
Laboratory Investigations of Low-Swirl Injectors Operating With Syngases
,”
ASME J. Eng. Gas Turbines. Power
,
132
(
1
), p.
011502
.10.1115/1.3124662
11.
Taupin
,
B.
,
Cabotâ
,
G.
,
Martins
,
G.
,
Vauchelles
,
D.
, and
Boukhalfa
,
A.
,
2007
, “
Experimental Study of Stability, Structure and Châ—Chemiluminescence in a Pressurized Lean Premixed Methane Turbulent Flame
,”
Combust. Sci. Technol.
,
179
(
1–2
), pp.
117
136
.10.1080/00102200600808383
12.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Res. Technol.
,
135
(
4
), p.
042204
.10.1115/1.4024222
13.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2014
, “
Dual Injection Distributed Combustion for Gas Turbine Application
,”
ASME J. Energy Res. Technol.
,
136
(
1
), p.
011601
.10.1115/1.4025020
14.
Wan
,
J.
,
Fan
,
A.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
, “
Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19190
19197
.10.1016/j.ijhydene.2012.09.154
15.
Habib
,
M. A.
,
El-Mahallawy
,
F. M.
,
Abdel-Hafez
,
A. H.
, and
Naseef
,
N.
,
1992
, “
Stability Limits and Temperature Measurements in a Tangentially-Fired Model Furnace
,”
Energy
,
17
(
3
), pp.
283
294
.10.1016/0360-5442(92)90056-6
16.
Hu
,
E.
,
Huang
,
Z.
,
Zheng
,
J.
,
Li
,
Q.
, and
He
,
J.
,
2009
, “
Numerical Study on Laminar Burning Velocity and NO Formation of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6545
6557
.10.1016/j.ijhydene.2009.05.080
17.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
, and
Miao
,
H.
,
2009
, “
Experimental and Numerical Study on Lean Premixed Methane–Hydrogen–Air Flames at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energy
,
34
(
16
), pp.
6951
6960
.10.1016/j.ijhydene.2009.06.072
18.
Huang
,
Z.
,
Zhang
,
Y.
,
Zeng
,
K.
,
Liu
,
B.
,
Wang
,
Q.
, and
Jiang
,
D.
,
2006
, “
Measurements of Laminar Burning Velocities for Natural Gas–Hydrogen–Air mixtures
,”
Combust. Flame
,
146
(
1
), pp.
302
311
.10.1016/j.combustflame.2006.03.003
19.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas-Air Mixtures at Elevated Pressures
,”
J. Energy Resource Tech.
,
133
(3), p.
031002
.10.1115/1.4004607
20.
Gersen
,
S.
,
Anikin
,
N. B.
,
Mokhov
,
A. V.
, and
Levinsky
,
H. B.
,
2008
, “
Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1957
1964
.10.1016/j.ijhydene.2008.01.017
21.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaili-Chaumeix
,
N.
, and
Gokalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
201
208
.10.1016/j.proci.2004.08.195
22.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane-Hydrogen-Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.10.1016/j.ijhydene.2009.03.058
23.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
24.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J. H.
,
2009
, “
Dynamics, NOx, and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.10.1016/j.ijhydene.2008.09.075
25.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
26.
Park
,
C.
,
Kim
,
C.
,
Choi
,
Y.
,
Won
,
S.
, and
Moriyoshi
,
Y.
,
2011
, “
The Influences of Hydrogen on the Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine
,”
Int. J. Hydrogen Energy
,
36
(
5
), pp.
3739
3745
.10.1016/j.ijhydene.2010.12.021
27.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Hydrogen Addition Effects on High Intensity Distributed Combustion
,”
Appl. Energy
,
104
, pp.
71
78
.10.1016/j.apenergy.2012.11.004
28.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Fuel Flexible Distributed Combustion for Efficient and Clean Gas Turbine Engines
,”
Appl. Energy
,
109
, pp.
267
274
.10.1016/j.apenergy.2013.04.052
29.
Cozzi
,
F.
, and
Coghe
,
A.
,
2006
, “
Behavior of Hydrogen-Enriched Non-Premixed Swirled Natural Gas Flames
,”
Int. J. Hydrogen Energy
,
31
(
6
), pp.
669
677
.10.1016/j.ijhydene.2005.05.013
30.
Ilbas
,
M.
,
Yilmaz
,
I.
,
Veziroglu
,
T. N.
, and
Kaplan
,
Y.
,
2005
, “
Hydrogen as Burner Fuel: Modelling of Hydrogen-Hydrocarbon Composite Fuel Combustion and NOx Formation in a Small Burner
,”
Int. J. Energy Res.
,
29
(
11
), pp.
973
990
.10.1002/er.1104
31.
Anon, “Gross and Net Heating Values for some common Gases,” Retrieved March 5, 2014, from http://www.engineeringtoolbox.com/gross-net-heating-values-d_420.html
32.
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2013
, “
Experimental and Numerical Investigations of an Atmospheric Diffusion Oxy-Combustion Flame in a Gas Turbine Model Combustor
,”
Appl. Energy
,
111
, pp.
401
415
.10.1016/j.apenergy.2013.05.027
33.
Ren
,
J. Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
, and
Tsotsis
,
T. T.
,
2001
, “
Strain-Rate Effects on Hydrogen-Enhanced Lean Premixed Combustion
,”
Combust. Flame
,
124
(
4
), pp.
717
720
.10.1016/S0010-2180(00)00205-4
34.
Ghoniem
,
A. F.
,
Annaswamy
,
A.
,
Park
,
S.
, and
Sobhani
,
Z. C.
,
2005
, “
Stability and Emissions Control Using Air Injection and H2 Addition in Premixed Combustion
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1765
1773
.10.1016/j.proci.2004.08.175
35.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Res. Technol.
,
134
(
1
), p.
012601
.10.1115/1.4005246
36.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
022202
.10.1115/1.4026204
37.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Hydrogen Addition Effects on Methane-Air Colorless Distributed Combustion Flames
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6292
6302
.10.1016/j.ijhydene.2011.02.028
You do not currently have access to this content.