The paper presents the model of a combined heat and power (CHP) unit, based on a variable speed internal combustion engine (ICE) interfaced with a photovoltaic (PV) system. This model is validated by means of experimental data obtained on an 85 kWe CHP unit fueled with natural gas and a PV system with a rated power of 17.9 kW. Starting from daily load profiles, the model is applied to investigate the primary energy saving (PES) of the integrated CHP + PV system in several operating conditions and for different sizes of PV array. The results demonstrate the dependence of the CHP performance on the operating mode and a limited convenience of the variable speed strategy. The integrated system operation leads to performance improvements, which depend on the size of the PV component.

References

1.
Commission of the European Communities,
2007
, “
An Energy Policy for Europe
,” Brussels, Belgium.
2.
Commission of the European Communities,
2008
, “
20 20 by 2020 Europe's Climate Change Opportunity
,” Brussels, Belgium.
3.
Directive 2004/8/EC of the European Parliament and of the Council,
2004
, “On the Promotion of Cogeneration Based on a Useful Heat Demand in the Internal Energy Market and Amending Directive 92/42/EEC.
4.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
.10.1115/1.4005082
5.
Badami
,
M.
,
Casetti
,
A.
,
Campanile
,
P.
, and
Anzioso
,
F.
,
2007
, “
Performance of an Innovative 120 kWe Natural Gas Cogeneration System
,”
Energy
,
32
(
5
), pp.
823
833
.10.1016/j.energy.2006.06.006
6.
Badami
,
M.
,
Mura
,
M.
,
Campanile
,
P.
, and
Anzioso
,
F.
,
2008
, “
Design and Performance Evaluation of an Innovative Small Scale Combined Cycle Cogeneration System
,”
Energy
,
33
(
8
), pp.
1264
1276
.10.1016/j.energy.2008.03.001
7.
Caresana
,
F.
,
Brandoni
,
C.
,
Feliciotti
,
P.
, and
Bartolini
,
C. M.
,
2011
, “
Energy and Economic Analysis of an ICE-Based Variable Speed-Operated Micro-Cogenerator
,”
Appl. Energy
,
88
(
3
), pp.
659
671
.10.1016/j.apenergy.2010.08.016
8.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031201
.10.1115/1.4026313
9.
Pearce
,
J. M.
,
2009
, “
Expanding Photovoltaic Penetration With Residential Distributed Generation From Hybrid Solar Photovoltaic and Combined Heat and Power Systems
,”
Energy
,
34
(
11
), pp.
1947
1954
.10.1016/j.energy.2009.08.012
10.
Carmeli
,
M. S.
,
Castelli-Dezza
,
F.
,
Mauri
,
M.
,
Marchegiani
,
G.
, and
Rosati
,
D.
,
2012
, “
Control Strategies and Configurations of Hybrid Distributed Generation Systems
,”
Renewable Energy
,
41
(
1
), pp.
294
305
.10.1016/j.renene.2011.11.010
11.
Rustica
,
G.
,
Badami
,
M.
, and
Portoraro
,
A.
,
2010
, “
Micro-cogenerazione nel settore residenziale con l'utilizzo di motori a combustione interna: Sviluppo di un modello matematico per la simulazione oraria e analisi di un caso reale
,” ENEA-RSE Report RdS/2010/x227.
12.
Duffie
,
J. A.
,
William
,
A.
, and
Beckman
,
W. A.
,
2006
, Solar Engineering of Thermal Processes, 3rd ed., Wiley, Hoboken, NJ,
13.
Loutzenhiser
,
P. G.
,
Manz
,
H.
,
Felsmann
,
C.
,
Strachan
,
P. A.
,
Frank
,
T.
, and
Maxwell
,
G. M.
,
2007
, “
Empirical Validation of Models to Compute Solar Irradiance on Inclined Surfaces for Building Energy Simulation
,”
Sol. Energy
,
81
(
2
), pp.
254
267
.10.1016/j.solener.2006.03.009
14.
Micheli
,
D.
,
Alessandrini
,
S.
,
Radu
,
R.
, and
Casula
,
I.
,
2014
, “
Analysis of the Outdoor Performance and Efficiency of Two Grid Connected Photovoltaic Systems in Northern Italy
,”
Energy Convers. Manage.
,
80
, pp.
436
445
.10.1016/j.enconman.2014.01.053
15.
King
,
D. L.
,
Boyson
,
W. E.
, and
Kratochvil
,
J. A.
,
2004
, “
Photovoltaic Array Performance Model
,” Sandia National Laboratories, Report No. SAND2004-3535.
16.
SANYO Component Europe GmbH—Solar Division,
2008
, “
Sanyo HIT Photovoltaic Module
,” München, Germany.
17.
AVL List GmbH,
2011
, “
AVL BOOST Theory
,” Graz, Austria.
18.
AVL List GmbH,
2011
, “
AVL BOOST User's Guide
,” Graz, Austria.
19.
GM Powertrain,
2007
, “
Vortec 8100 Industrial Engine
,” Turin, Italy.
20.
Barbieri
,
E. S.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2012
, “
Analysis of Innovative Micro-CHP Systems to Meet Household Energy Demands
,”
Appl. Energy
,
97
, pp.
723
733
.10.1016/j.apenergy.2011.11.081
21.
European Union
,
2011
, “
Implementing the Energy Performance of Buildings Directive (EPBD)
,” Brussels, Belgium.
22.
Di Andrea
,
F.
, and
Danese
,
A.
,
2004
, “
MICENE—Misure dei consumi di energia elettrica nel settore domestico
,” Dipartimento di Energetica—Politecnico di Milano, eERG, Milano, Italy.
24.
Cullen
,
B.
, and
McGovern
,
J.
,
2009
, “
The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
021601
.10.1115/1.3120377
25.
Facci
,
A. L.
,
Andreassi
,
L.
,
Martini
,
F.
, and
Ubertini
,
S.
,
2014
, “
Comparing Energy and Cost Optimization in Distributed Energy Systems Management
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032001
.10.1115/1.4027155
You do not currently have access to this content.