The present work aims at developing a computational model for the prediction of oxygen separation through La2NiO4 disk shaped membranes. The influence of oxygen concentration on the permeation rate was studied experimentally. The model has been validated by comparing the numerical results with those of experiments. The optimal diameter of the inner tube for sweep gas and its distance (gap height) from the membrane surface for maximum oxygen permeation has been investigated. For the present geometry, the optimum gap height (P) is in the range of 0.85–1.25 mm and the optimum diameter (Di) is in the range of 1.5–2.5 mm. Finally it is concluded, as indicated by the numerical and experimental investigations, that with increase in the ratio of O2/N2 mixture on the feed side the oxygen permeation rate increases.

References

References
1.
Islam
,
M. S.
,
Cherry
,
M.
, and
Catlow
,
C. R. A.
,
1996
, “
Oxygen Diffusion in LaMnO3 and LaCoO3 Perovskite-Type Oxides: A Molecular Dynamics Study
,”
J. Solid State Chem.
,
124
(
2
), pp.
230
237
.10.1006/jssc.1996.0231
2.
Bouwmeester
,
H. J. M.
,
Kruidhof
,
H.
, and
Burggraaf
,
A. J.
,
1994
, “
Importance of the Surface Exchange Kinetics as Rate Limiting Step in Oxygen Permeation Through Mixed-Conducting Oxides
,”
Solid State Ionics
,
72
(
Part 2
), pp.
185
194
.10.1016/0167-2738(94)90145-7
3.
Steele
,
B. C. H.
,
1992
, “
Oxygen Ion Conductors and Their Technological Applications
,”
Mater. Sci. Eng. B
,
13
(
2
), pp.
79
87
.10.1016/0921-5107(92)90146-Z
4.
Allam
,
R. J.
,
2009
, “
Improved Oxygen Production Technologies
,”
Energy Procedia
,
1
(
1
), pp.
461
470
.10.1016/j.egypro.2009.01.062
5.
Gellings
,
P. J.
, and
Bouwmeester
,
H.
,
1997
,
The CRC Handbook of Solid State Electrochemistry
,
CRC Press
,
Boca Raton, FL
.
6.
Habib
,
M. A.
,
Badr
,
H. M.
,
Ahmed
,
S. F.
,
Ben-Mansour
,
R.
,
Mezghani
,
K.
,
Imashuku
,
S.
,
la O'
,
G. J.
,
Shao-Horn
,
Y.
,
Mancini
,
N. D.
,
Mitsos
,
A.
,
Kirchen
,
P.
, and
Ghoneim
,
A. F.
,
2011
, “
A Review of Recent Developments in Carbon Capture Utilizing Oxy-Fuel Combustion in Conventional and Ion Transport Membrane Systems
,”
Int. J. Energy Res.
,
35
(
9
), pp.
741
764
.10.1002/er.1798
7.
Xu
,
S. J.
, and
Thomson
,
W. J.
,
1999
, “
Oxygen Permeation Rates Through Ion-Conducting Perovskite Membranes
,”
Chem. Eng. Sci.
,
54
(
17
), pp.
3839
3850
.10.1016/S0009-2509(99)00015-9
8.
Smith
,
A.
, and
Klosek
,
J.
,
2001
, “
A Review of Air Separation Technologies and Their Integration With Energy Conversion Processes
,”
Fuel Process. Technol.
,
70
(
2
), pp.
115
134
.10.1016/S0378-3820(01)00131-X
9.
Sunarso
,
J.
,
Baumann
,
S.
,
Serra
,
J. M.
,
Meulenberg
,
W. A.
,
Liu
,
S.
,
Lin
,
Y. S.
, and
Diniz da Costa
,
J. C.
,
2008
, “
Mixed Ionic–Electronic Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation
,”
J. Membr. Sci.
,
320
(
1–2
), pp.
13
41
.10.1016/j.memsci.2008.03.074
10.
Bernardo
,
P.
,
Drioli
,
E.
, and
Golemme
,
G.
,
2009
, “
Membrane Gas Separation: A Review/State of the Art
,”
Ind. Eng. Chem. Res.
,
48
(
10
), pp.
4638
4663
.10.1021/ie8019032
11.
Wang
,
H.
,
Cong
,
Y.
, and
Yang
,
W.
,
2002
, “
Oxygen Permeation Study in a Tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ Oxygen Permeable Membrane
,”
J. Membr. Sci.
,
210
(2), pp.
259
271
.10.1016/S0376-7388(02)00361-7
12.
Guillodo
,
M.
,
Fouletier
,
J.
,
Dessemond
,
L.
, and
Del Gallo
,
P.
,
2002
, “
Oxygen Permeation Through Dense Bi2V0.9Cu0.1O5.35 Ceramic Membranes
,”
J. Electrochem. Soc.
,
149
(
12
), pp.
J93
J99
.10.1149/1.1516227
13.
Taheri
,
Z.
,
Nazari
,
K.
,
Seyed-Matin
,
N.
,
Safekordi
,
A.
,
Ghanbari
,
B.
,
Zarrinpashne
,
S.
, and
Ahmadi
,
R.
,
2010
, “
Comparison of Oxygen Permeation Through Some Perovskite Membranes Synthesized With EDTNAD
,”
React. Kinet. Mech. Catal.
,
100
(
2
), pp.
459
469
.10.1007/s11144-010-0158-2
14.
Xuan
,
J.
,
Leung
,
M. K. H.
,
Leung
,
D. Y. C.
, and
Ni
,
M.
,
2009
, “
Integrating Chemical Kinetics With CFD Modeling for Autothermal Reforming of Biogas
,”
Int. J. Hydrogen Energy
,
34
(
22
), pp.
9076
9086
.10.1016/j.ijhydene.2009.09.002
15.
Coroneo
,
M.
,
Montante
,
G.
, and
Paglianti
,
A.
,
2010
, “
Numerical and Experimental Fluid-Dynamic Analysis to Improve the Mass Transfer Performances of Pd–Ag Membrane Modules for Hydrogen Purification
,”
Ind. Eng. Chem. Res.
,
49
(
19
), pp.
9300
9309
.10.1021/ie100840z
16.
Coroneo
,
M.
,
Montante
,
G.
,
Giacinti Baschetti
,
M.
, and
Paglianti
,
A.
,
2009
, “
CFD Modelling of Inorganic Membrane Modules for Gas Mixture Separation
,”
Chem. Eng. Sci.
,
64
(
5
), pp.
1085
1094
.10.1016/j.ces.2008.10.065
17.
Ben-Mansour
,
R.
,
Habib
,
M.
,
Badr
,
H.
, and
Nemitallah
,
M.
,
2012
, “
Characteristics of Oxy-Fuel Combustion in an Oxygen Transport Reactor
,”
Energy Fuels
,
26
(
7
), pp.
4599
4606
.10.1021/ef300539c
18.
Nemitallah
,
M.
,
Habib
,
M.
, and
Mansour
,
R. B.
,
2013
, “
Investigations of Oxy-Fuel Combustion and Oxygen Permeation in an ITM Reactor Using a Two-Step Oxy-Combustion Reaction Kinetics Model
,”
J. Membr. Sci.
,
432
, pp.
1
12
.10.1016/j.memsci.2012.12.028
19.
Mancini
,
N. D.
, and
Mitsos
,
A.
,
2011
, “
Ion Transport Membrane Reactors for Oxy-Combustion. Part I: Intermediate-Fidelity Modeling
,”
Energy
,
36
(
8
), pp.
4701
4720
.10.1016/j.energy.2011.05.023
20.
van Hassel
,
B. A.
,
2004
, “
Oxygen Transfer Across Composite Oxygen Transport Membranes
,”
Solid State Ionics
,
174
(
1–4
), pp.
253
260
.10.1016/j.ssi.2004.07.034
21.
Guide
,
F. U.
,
2007
,
Fluent
,
Fluent Inc.
,
Lebanon, NH
.
22.
McGee
,
H. A.
,
1991
,
Molecular Engineering
,
McGraw Hill
,
New York
.
23.
Farooqui
,
A. E.
,
Habib
,
M. A.
,
Badr
,
H. M.
, and
Ben-Mansour
,
R.
,
2013
, “
Modeling of Ion Transport Reactor for Oxy-Fuel Combustion
,”
Int. J. Energy Res.
,
37
(
11
), pp.
1265
1279
.10.1002/er.2923
You do not currently have access to this content.